Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

Related tags

Deep Learningaccentor
Overview

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues

Overview

ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialogues from Schema Guided Dialogue (SGD) and MultiWOZ 2.1, allowing researchers to study contexutal addition of chit-chat utterances for virtual assistants, to make task-oriented dialogues more engaging and social.

We also provide three new models for ACCENTOR explicitly trained to predict user goals and to generate contextually relevant chit-chat responses.

Automatic and human evaluations show that, compared with the state of-the-art task-oriented baseline, our models can code-switch between task and chit-chat to be more engaging, interesting, knowledgeable, and humanlike, while maintaining competitive task performance.

For more details, please refer to this paper.

Data

  • v1.0/candidates-{sgd,multiwoz}.json: Annotated chit-chat candidates. The format is as follows.
{
 "dialogue 1 / id": [
  [
   dialogue 1 / candidate 1 / turn id,
   dialogue 1 / candidate 1 / position,
   dialogue 1 / candidate 1 / candidate,
   dialogue 1 / candidate 1 / label,
   dialogue 1 / candidate 1 / justification
  ],
  [
   dialogue 1 / candidate 2 / turn id,
   ...
  ],
  ...
 ],
 "dialogue 2 / id": [
  ...
 ],
 ...
}
  • Folder v1.0/accentor-sgd: The augmented SGD dataset. The format follows the original SGD dataset, with two additional keys (i.e., beginning and end) that store lists of (candidate, label, justification) tuples.

    • The folder is generated by v1.0/accentor-sgd.py (with v1.0/candidates-sgd.json and the original SGD dataset as input). Usage: python3 v1.0/accentor-sgd.py --help.
  • v1.0/accentor-multiwoz-1k.json: 1K augmented MultiWOZ 2.1 dialogues. The format follows the original MultiWOZ dataset, with two additional keys (i.e., beginning and end) that store lists of (candidate, label, justification) tuples.

    • The file is generated by v1.0/accentor-multiwoz.py (with v1.0/candidates-multiwoz.json and the original MultiWOZ 2.1 dataset as input). Usage: python3 v1.0/accentor-multiwoz.py --help.

Baseline Models

Preparation

  • Dependencies: ParlAI (af12799a) and Transformers (2.11.0)

  • Run the following commands to prepare the data for model training and the off-the-shelf models (i.e., a task-oriented dialogue model and a chit-chat model) for Arranger and Rewriter.

cp -r ./v1.0/accentor-sgd .

python3 gen_delex.py

python3 gen_parlai_data.py

parlai train_model -t fromfile:parlaiformat --fromfile_datapath ./parlai --fromfile-datatype-extension true  -m transformer/generator --init-model zoo:tutorial_transformer_generator/model --dict-file zoo:tutorial_transformer_generator/model.dict --embedding-size 512 --n-layers 8 --ffn-size 2048 --dropout 0.1 --n-heads 16 --learn-positional-embeddings True --n-positions 512 --variant xlm --activation gelu --skip-generation True --fp16 True --text-truncate 512 --label-truncate 128 --dict-tokenizer bpe --dict-lower True -lr 1e-06 --optimizer adamax --lr-scheduler reduceonplateau --gradient-clip 0.1 -veps 0.25 --betas 0.9,0.999 --update-freq 1 --attention-dropout 0.0 --relu-dropout 0.0 --skip-generation True -vp 15 -stim 60 -vme 20000 -bs 16 -vmt ppl -vmm min --save-after-valid True --model-file ./train_90M

parlai interactive -mf ./train_90M < lm.input.dev.cc.txt > lm.output.dev.cc.txt

parlai interactive -mf ./train_90M < lm.input.test.cc.txt > lm.output.test.cc.txt

python3 run_language_modeling.py --output_dir=output_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.txt --do_eval  --eval_data_file=lm.input.dev.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.txt --output dev.inference.gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.txt --output test.inference.gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

SimpleTOD+

  • Dependency: Transformers (2.11.0)
python3 run_language_modeling.py --output_dir=output_both_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.both.txt --do_eval  --eval_data_file=lm.input.dev.both.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.txt --output dev.inference.both_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_both_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.txt --output test.inference.both_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_both_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

Arranger

  • Dependency: Transformers (2.2.0)
python3 gen_arranger_input.py

python3 run_multiple_choice.py --model_type roberta --task_name acc --model_name_or_path roberta-base --do_train --do_eval --do_test --do_lower_case --data_dir . --learning_rate 2e-5 --num_train_epochs 3 --max_seq_length 512 --output_dir acc_arranger_roberta_base_3epoch --per_gpu_eval_batch_size=16 --per_gpu_train_batch_size=1 --gradient_accumulation_steps 24 --overwrite_output --save_steps 10000

python3 gen_arranger_output.py

Rewriter

  • Dependency: Transformers 2.11.0
python3 gen_rewriter_data.py

python3 run_language_modeling.py --output_dir=output_ff_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.ff.txt  --do_eval --eval_data_file=lm.input.dev.ff.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.ff.txt --output dev.inference.ff_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_ff_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.ff.txt --output test.inference.ff_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_ff_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

Evaluation

  • Dependency: the official evaluation script of SGD

  • Pass the output inference files (i.e., {dev,test}.inference*.json) to gen_predict.py to obtain act-slot F1 and BLEU-4 scores. For example,

python3 gen_predict.py --inference test.inference.both_gpt2_10epoch_1e-3_fp16.json --split test
  • The above command will also generate a folder (named ./prediction/ by default), which can be passed to the official evaluation script of SGD to obtain the joint goal accuracy and average accuracy. For example,
python3 -m schema_guided_dst.evaluate --dstc8_data_dir ./simpletod/ --prediction_dir ./prediction/test/ --eval_set test --output_metric_file simpletod+_test_result.json

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following article (pdf):

@inproceedings{sun2020adding,
  title={Adding Chit-Chat to Enhance Task-Oriented Dialogues},
  author={Sun, Kai and Moon, Seungwhan and Crook, Paul and Roller, Stephen and Silvert, Becka and Liu, Bing and Wang, Zhiguang and Liu, Honglei and Cho, Eunjoon and Cardie, Claire},
  booktitle={Proceedings of the NAACL-HLT},
  year={2021},
  url={https://arxiv.org/abs/2010.12757}
}

License

ACCENTOR is released under CC-BY-SA-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022