Calling Julia from Python - an experiment on data loading

Overview

Calling Julia from Python - an experiment on data loading

DOI

See the slides.

TLDR

After reading Patrick's blog post, we decided to try to replace C++ with Julia to check:

  • How easy/hard it is
  • How much improvement can be gained with a basic version
  • How much improvement can be gained with an optimized version

A basic version is already an improvement over the pure Python version, and an optimized version was faster than the C++ version.

Reproduction

  • Follow Patrick's blog post to install the C++ part.
  • Install Julia (We've used Julia 1.6.3)
    • I recommend using Jill
    • We'll refer to this Julia as path/to/julia.
  • Install Python
    • Ideally, one dynamically linked to libpython.
    • To test it, use ldd path/to/python and look for libpython3.9. It should exist for the shared version.
    • If you don't have, look into workarounds here
    • Tip: Archlinux's system Python is dynamically linked.
    • We've used Python 3.9.7 from Archlinux.
  • Open Julia and enter the following commands:
    • ENV["PYTHON"] = "path/to/python"
    • using Pkg
    • Pkg.add("PyCall")
    • This will make sure that the packages we are installing use the correct Python version
  • Install juliapy with path/to/python -m pip install julia
  • Run path/to/python and enter
    • import julia
    • julia.install("julia=path/to/julia")
  • Download dataset and store in gen-data folder: Zenodo badge
  • Run scalability_test.py - it should take several hours (over 10) and consume a moderate amount of memory.
  • Run scalability_analysis.py.
You might also like...
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Python and Julia in harmony.
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

✔️ Visual, reactive testing library for Julia. Time machine included.
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Comments
  • Fix python versions ~~using poetry~~

    Fix python versions ~~using poetry~~

    To prevent this pull request from becoming too large, I'll merge this and create a new issue to set the python versions.

    Originally posted by @abelsiqueira in https://github.com/abelsiqueira/call-julia-from-python-experiments/issues/1#issuecomment-987970132

    opened by abelsiqueira 1
  • Improve docker-10

    Improve docker-10

    Fixes: #10

    • Changes Ubuntu version to 21.10
    • Adds extra environment variables
    • Removes the Python virtual environment
    • Add make flags to compile the tools faster
    • Remove the downloaded tar files
    • Uninstall dev dependencies
    opened by fdiblen 0
Releases(v0.3.0)
Owner
Abel Siqueira
Abel Siqueira
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022