A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Overview

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks

This repository is the official PyTorch implementation of AAAI-21 paper Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks, which provides practical and effective tricks used in long-tailed image classification.

Trick gallery: trick_gallery.md

  • The tricks will be constantly updated. If you have or need any long-tail related trick newly proposed, please to open an issue or pull requests. Make sure to attach the results in corresponding md files if you pull a request with a new trick.
  • For any problem, such as bugs, feel free to open an issue.

Paper collection of long-tailed visual recognition

Awesome-of-Long-Tailed-Recognition

Long-Tailed-Classification-Leaderboard

Development log

Trick gallery and combinations

Brief inroduction

We divided the long-tail realted tricks into four families: re-weighting, re-sampling, mixup training, and two-stage training. For more details of the above four trick families, see the original paper.

Detailed information :

  • Trick gallery:

    Tricks, corresponding results, experimental settings, and running commands are listed in trick_gallery.md.
  • Trick combinations:

    Combinations of different tricks, corresponding results, experimental settings, and running commands are listed in trick_combination.md.
  • These tricks and trick combinations, which provide the corresponding results in this repo, have been reorgnized and tested. We are trying our best to deal with the rest, which will be constantly updated.

Main requirements

torch >= 1.4.0
torchvision >= 0.5.0
tensorboardX >= 2.1
tensorflow >= 1.14.0 #convert long-tailed cifar datasets from tfrecords to jpgs
Python 3
apex
  • We provide the detailed requirements in requirements.txt. You can run pip install requirements.txt to create the same running environment as ours.
  • The apex is recommended to be installed for saving GPU memories:
pip install -U pip
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • If the apex is not installed, the Distributed training with DistributedDataParallel in our codes cannot be used.

Preparing the datasets

We provide three datasets in this repo: long-tailed CIFAR (CIFAR-LT), long-tailed ImageNet (ImageNet-LT), and iNaturalist 2018 (iNat18).

The detailed information of these datasets are shown as follows:

Datasets CIFAR-10-LT CIFAR-100-LT ImageNet-LT iNat18
Imbalance factor
100 50 100 50
Training images 12,406 13,996 10,847 12,608 11,5846 437,513
Classes 50 50 100 100 1,000 8,142
Max images 5,000 5,000 500 500 1,280 1,000
Min images 50 100 5 10 5 2
Imbalance factor 100 50 100 50 256 500
-  `Max images` and `Min images` represents the number of training images in the largest and smallest classes, respectively.

-  CIFAR-10-LT-100 means the long-tailed CIFAR-10 dataset with the imbalance factor $\beta = 100$.

-  Imbalance factor is defined as $\beta = \frac{\text{Max images}}{\text{Min images}}$.

  • Data format

The annotation of a dataset is a dict consisting of two field: annotations and num_classes. The field annotations is a list of dict with image_id, fpath, im_height, im_width and category_id.

Here is an example.

{
    'annotations': [
                    {
                        'image_id': 1,
                        'fpath': '/data/iNat18/images/train_val2018/Plantae/7477/3b60c9486db1d2ee875f11a669fbde4a.jpg',
                        'im_height': 600,
                        'im_width': 800,
                        'category_id': 7477
                    },
                    ...
                   ]
    'num_classes': 8142
}
  • CIFAR-LT

    There are two versions of CIFAR-LT.

    1. Cui et al., CVPR 2019 firstly proposed the CIFAR-LT. They provided the download link of CIFAR-LT, and also the codes to generate the data, which are in TensorFlow.

      You can follow the steps below to get this version of CIFAR-LT:

      1. Download the Cui's CIFAR-LT in GoogleDrive or Baidu Netdisk (password: 5rsq). Suppose you download the data and unzip them at path /downloaded/data/.
      2. Run tools/convert_from_tfrecords, and the converted CIFAR-LT and corresponding jsons will be generated at /downloaded/converted/.
    # Convert from the original format of CIFAR-LT
    python tools/convert_from_tfrecords.py  --input_path /downloaded/data/ --out_path /downloaded/converted/
    1. Cao et al., NeurIPS 2019 followed Cui et al., CVPR 2019's method to generate the CIFAR-LT randomly. They modify the CIFAR datasets provided by PyTorch as this file shows.
  • ImageNet-LT

    You can use the following steps to convert from the original images of ImageNet-LT.

    1. Download the original ILSVRC-2012. Suppose you have downloaded and reorgnized them at path /downloaded/ImageNet/, which should contain two sub-directories: /downloaded/ImageNet/train and /downloaded/ImageNet/val.
    2. Download the train/test splitting files (ImageNet_LT_train.txt and ImageNet_LT_test.txt) in GoogleDrive or Baidu Netdisk (password: cj0g). Suppose you have downloaded them at path /downloaded/ImageNet-LT/.
    3. Run tools/convert_from_ImageNet.py, and you will get two jsons: ImageNet_LT_train.json and ImageNet_LT_val.json.
    # Convert from the original format of ImageNet-LT
    python tools/convert_from_ImageNet.py --input_path /downloaded/ImageNet-LT/ --image_path /downloaed/ImageNet/ --output_path ./
  • iNat18

    You can use the following steps to convert from the original format of iNaturalist 2018.

    1. The images and annotations should be downloaded at iNaturalist 2018 firstly. Suppose you have downloaded them at path /downloaded/iNat18/.
    2. Run tools/convert_from_iNat.py, and use the generated iNat18_train.json and iNat18_val.json to train.
    # Convert from the original format of iNaturalist
    # See tools/convert_from_iNat.py for more details of args 
    python tools/convert_from_iNat.py --input_json_file /downloaded/iNat18/train2018.json --image_path /downloaded/iNat18/images --output_json_file ./iNat18_train.json
    
    python tools/convert_from_iNat.py --input_json_file /downloaded/iNat18/val2018.json --image_path /downloaded/iNat18/images --output_json_file ./iNat18_val.json 

Usage

In this repo:

  • The results of CIFAR-LT (ResNet-32) and ImageNet-LT (ResNet-10), which need only one GPU to train, are gotten by DataParallel training with apex.

  • The results of iNat18 (ResNet-50), which need more than one GPU to train, are gotten by DistributedDataParallel training with apex.

  • If more than one GPU is used, DistributedDataParallel training is efficient than DataParallel training, especially when the CPU calculation forces are limited.

Training

Parallel training with DataParallel

1, To train
# To train long-tailed CIFAR-10 with imbalanced ratio of 50. 
# `GPUs` are the GPUs you want to use, such as `0,4`.
bash data_parallel_train.sh configs/test/data_parallel.yaml GPUs

Distributed training with DistributedDataParallel

1, Change the NCCL_SOCKET_IFNAME in run_with_distributed_parallel.sh to [your own socket name]. 
export NCCL_SOCKET_IFNAME = [your own socket name]

2, To train
# To train long-tailed CIFAR-10 with imbalanced ratio of 50. 
# `GPUs` are the GPUs you want to use, such as `0,1,4`.
# `NUM_GPUs` are the number of GPUs you want to use. If you set `GPUs` to `0,1,4`, then `NUM_GPUs` should be `3`.
bash distributed_data_parallel_train.sh configs/test/distributed_data_parallel.yaml NUM_GPUs GPUs

Validation

You can get the validation accuracy and the corresponding confusion matrix after running the following commands.

See main/valid.py for more details.

1, Change the TEST.MODEL_FILE in the yaml to your own path of the trained model firstly.
2, To do validation
# `GPUs` are the GPUs you want to use, such as `0,1,4`.
python main/valid.py --cfg [Your yaml] --gpus GPUS

The comparison between the baseline results using our codes and the references [Cui, Kang]

  • We use Top-1 error rates as our evaluation metric.
  • From the results of two CIFAR-LT, we can see that the CIFAR-LT provided by Cao has much lower Top-1 error rates on CIFAR-10-LT, compared with the baseline results reported in his paper. So, in our experiments, we use the CIFAR-LT of Cui for fairness.
  • For the ImageNet-LT, we find that the color_jitter augmentation was not included in our experiments, which, however, is adopted by other methods. So, in this repo, we add the color_jitter augmentation on ImageNet-LT. The old baseline without color_jitter is 64.89, which is +1.15 points higher than the new baseline.
  • You can click the Baseline in the table below to see the experimental settings and corresponding running commands.
Datasets Cui et al., 2019 Cao et al., 2020 ImageNet-LT iNat18
CIFAR-10-LT CIFAR-100-LT CIFAR-10-LT CIFAR-100-LT
Imbalance factor Imbalance factor
100 50 100 50 100 50 100 50
Backbones ResNet-32 ResNet-32 ResNet-10 ResNet-50
Baselines using our codes
  1. CONFIG (from left to right):
    • configs/cui_cifar/baseline/{cifar10_im100.yaml, cifar10_im50.yaml, cifar100_im100.yaml, cifar100_im50.yaml}
    • configs/cao_cifar/baseline/{cifar10_im100.yaml, cifar10_im50.yaml, cifar100_im100.yaml, cifar100_im50.yaml}
    • configs/ImageNet_LT/imagenetlt_baseline.yaml
    • configs/iNat18/iNat18_baseline.yaml

  2. Running commands:
    • For CIFAR-LT and ImageNet-LT: bash data_parallel_train.sh CONFIG GPU
    • For iNat18: bash distributed_data_parallel_train.sh configs/iNat18/iNat18_baseline.yaml NUM_GPUs GPUs
30.12 24.81 61.76 57.65 28.05 23.55 62.27 56.22 63.74 40.55
Reference [Cui, Kang, Liu] 29.64 25.19 61.68 56.15 29.64 25.19 61.68 56.15 64.40 42.86

Citation

@inproceedings{zhang2020tricks,
  author    = {Yongshun Zhang and Xiu{-}Shen Wei and Boyan Zhou and Jianxin Wu},
  title     = {Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks},
  booktitle = {AAAI},
  year      = {2021},
}

Contacts

If you have any question about our work, please do not hesitate to contact us by emails provided in the paper.

Owner
Yong-Shun Zhang
Computer Vision
Yong-Shun Zhang
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022