2.86% and 15.85% on CIFAR-10 and CIFAR-100

Overview

Shake-Shake regularization

This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake regularization of 3-branch residual networks which was accepted as a workshop contribution at ICLR 2017.

The code is based on fb.resnet.torch.

Table of Contents

  1. Introduction
  2. Results
  3. Usage
  4. Contact

Introduction

The method introduced in this paper aims at helping deep learning practitioners faced with an overfit problem. The idea is to replace, in a multi-branch network, the standard summation of parallel branches with a stochastic affine combination. Applied to 3-branch residual networks, shake-shake regularization improves on the best single shot published results on CIFAR-10 and CIFAR-100 by reaching test errors of 2.86% and 15.85%.

shake-shake

Figure 1: Left: Forward training pass. Center: Backward training pass. Right: At test time.

Bibtex:

@article{Gastaldi17ShakeShake,
   title = {Shake-Shake regularization},
   author = {Xavier Gastaldi},
   journal = {arXiv preprint arXiv:1705.07485},
   year = 2017,
}

Results on CIFAR-10

The base network is a 26 2x32d ResNet (i.e. the network has a depth of 26, 2 residual branches and the first residual block has a width of 32). "Shake" means that all scaling coefficients are overwritten with new random numbers before the pass. "Even" means that all scaling coefficients are set to 0.5 before the pass. "Keep" means that we keep, for the backward pass, the scaling coefficients used during the forward pass. "Batch" means that, for each residual block, we apply the same scaling coefficient for all the images in the mini-batch. "Image" means that, for each residual block, we apply a different scaling coefficient for each image in the mini-batch. The numbers in the Table below represent the average of 3 runs except for the 96d models which were run 5 times.

Forward Backward Level 26 2x32d 26 2x64d 26 2x96d 26 2x112d
Even Even n\a 4.27 3.76 3.58 -
Even Shake Batch 4.44 - -
Shake Keep Batch 4.11 - - -
Shake Even Batch 3.47 3.30 - -
Shake Shake Batch 3.67 3.07 - -
Even Shake Image 4.11 - - -
Shake Keep Image 4.09 - - -
Shake Even Image 3.47 3.20 - -
Shake Shake Image 3.55 2.98 2.86 2.821

Table 1: Error rates (%) on CIFAR-10 (Top 1 of the last epoch)

Other results

Cifar-100:
29 2x4x64d: 15.85%

Reduced CIFAR-10:
26 2x96d: 17.05%1

SVHN:
26 2x96d: 1.4%1

Reduced SVHN:
26 2x96d: 12.32%1

Usage

  1. Install fb.resnet.torch, optnet and lua-stdlib.
  2. Download Shake-Shake
git clone https://github.com/xgastaldi/shake-shake.git
  1. Copy the elements in the shake-shake folder and paste them in the fb.resnet.torch folder. This will overwrite 5 files (main.lua, train.lua, opts.lua, checkpoints.lua and models/init.lua) and add 4 new files (models/shakeshake.lua, models/shakeshakeblock.lua, models/mulconstantslices.lua and models/shakeshaketable.lua).
  2. To reproduce CIFAR-10 results (e.g. 26 2x32d "Shake-Shake-Image" ResNet) on 2 GPUs:
CUDA_VISIBLE_DEVICES=0,1 th main.lua -dataset cifar10 -nGPU 2 -batchSize 128 -depth 26 -shareGradInput false -optnet true -nEpochs 1800 -netType shakeshake -lrShape cosine -baseWidth 32 -LR 0.2 -forwardShake true -backwardShake true -shakeImage true

To get comparable results using 1 GPU, please change the batch size and the corresponding learning rate:

CUDA_VISIBLE_DEVICES=0 th main.lua -dataset cifar10 -nGPU 1 -batchSize 64 -depth 26 -shareGradInput false -optnet true -nEpochs 1800 -netType shakeshake -lrShape cosine -baseWidth 32 -LR 0.1 -forwardShake true -backwardShake true -shakeImage true

A 26 2x96d "Shake-Shake-Image" ResNet can be trained on 2 GPUs using:

CUDA_VISIBLE_DEVICES=0,1 th main.lua -dataset cifar10 -nGPU 2 -batchSize 128 -depth 26 -shareGradInput false -optnet true -nEpochs 1800 -netType shakeshake -lrShape cosine -baseWidth 96 -LR 0.2 -forwardShake true -backwardShake true -shakeImage true
  1. To reproduce CIFAR-100 results (e.g. 29 2x4x64d "Shake-Even-Image" ResNeXt) on 2 GPUs:
CUDA_VISIBLE_DEVICES=0,1 th main.lua -dataset cifar100 -depth 29 -baseWidth 64 -groups 4 -weightDecay 5e-4 -batchSize 32 -netType shakeshake -nGPU 2 -LR 0.025 -nThreads 8 -shareGradInput true -nEpochs 1800 -lrShape cosine -forwardShake true -backwardShake false -shakeImage true

Note

Changes made to fb.resnet.torch files:

main.lua
Ln 17, 54-59, 81-100: Adds a log

train.lua
Ln 36-38 58-60 206-213: Adds the cosine learning rate function
Ln 88-89: Adds the learning rate to the elements printed on screen

opts.lua
Ln 21-64: Adds Shake-Shake options

checkpoints.lua
Ln 15-16: Adds require 'models/shakeshakeblock', 'models/shakeshaketable' and require 'std'
Ln 60-61: Avoids using the fb.resnet.torch deepcopy (it doesn't seem to be compatible with the BN in shakeshakeblock) and replaces it with the deepcopy from stdlib
Ln 67-86: Saves only the last model

models/init.lua
Ln 91-92: Adds require 'models/mulconstantslices', require 'models/shakeshakeblock' and require 'models/shakeshaketable'

The main model is in shakeshake.lua. The residual block model is in shakeshakeblock.lua. mulconstantslices.lua is just an extension of nn.mulconstant that multiplies elements of a vector with image slices of a mini-batch tensor. shakeshaketable.lua contains the method used for CIFAR-100 since the ResNeXt code uses a table implementation instead of a module version.

Reimplementations

Pytorch
https://github.com/hysts/pytorch_shake_shake

Tensorflow
https://github.com/tensorflow/models/blob/master/research/autoaugment/
https://github.com/tensorflow/tensor2tensor

Contact

xgastaldi.mba2011 at london.edu
Any discussions, suggestions and questions are welcome!

References

(1) Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. AutoAugment: Learning Augmentation Policies from Data. In arXiv:1805.09501, May 2018.

This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021