3D position tracking for soccer players with multi-camera videos

Overview

3D Player Tracking with Multi-View Stream

Project for 3DV 2021 Spring @ ETH Zurich [Report Link]


This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.
- In single-camera tracking stage, Tracktor++ is used to get 2D positions.
- In multi-camera tracking stage, 2D positions are projected into 3D positions. Then across-camera association is achieved as an optimization problem with spatial, temporal and visual constraints.
- In the end, visualization in 2D, 3D and a voronoi visualization for sports coaching purpose are provided.
3D Tracking Sports Coaching
demo demo

Demo

Check demo scripts as examples

Currently, processed data is under protection due to legal issues.

  • Run the demo visualization on the moving cameras
bash script/demo_moving.sh
  • Run the demo visualization on the fixed cameras
bash script/demo_fix.sh

Preprocessing

  • Split video into image frames
python src/utils/v2img.py --pathIn=data/0125-0135/CAM1/CAM1.mp4 --pathOut=data/0125-0135/CAM1/img --splitnum=1
  • Estimate football pitch homography (size 120m * 90m ref)

FIFA official document

python src/utils/computeHomo.py --img=data/0125-0135/RIGHT/img/image0000.jpg --out_dir=data/0125-0135/RIGHT/
  • Handle moving cameras
python src/utils/mov2static.py --calib_file=data/calibration_results/0125-0135/CAM1/calib.txt --img_dir=data/0125-0135/CAM1/img --output_dir=data/0125-0135/CAM1/img_static
  • Convert ground truth/annotation json to text file
python src/utils/json2txt.py --jsonfile=data/0125-0135/0125-0135.json

Single-camera tracking

  • Object Detector: frcnn_fpn
    Train object detector and generate detection results with this Google Colab notebook. [pretrained model]
  • Run Tracktor++
    Put trainded object detector model_epoch_50.model into src/tracking_wo_bnw/output/faster_rcnn_fpn_training_soccer/.
    Put data and calibration results into src/tracking_wo_bnw/.
cd src/tracking_wo_bnw
python experiments/scripts/test_tracktor.py
  • Run ReID(team id) model
python src/team_classification/team_svm.py PATH_TO_TRACKING_RESULT PATH_TO_IMAGES
  • Convert tracking results to coordinates on the pitch

Equation to find the intersection of a line with a plane (ref)

python src/calib.py --calib_path=PATH_TO_CALIB --res_path=PATH_TO_TRACKING_RESULT --xymode --reid

# also plot the camera positions for fixed cameras
python src/calib.py --calib_path=PATH_TO_CALIB --res_path=PATH_TO_TRACKING_RESULT --viz

Across-camera association

  • Run two-cam tracker
python src/runMCTRacker.py 

# add team id constraint
python src/runMCTRacker.py --doreid
  • Run multi-cam tracker (e.g. 8 cams)
python src/runTreeMCTracker.py --doreid

Evaluation

  • Produce quatitative results (visualize results)

visualize 2d bounding box

# if format 
python src/utils/visualize.py --img_dir=data/0125-0135/RIGHT/img --result_file=output/tracktor/16m_right_prediction.txt 
# if format 
python src/utils/visualize.py --img_dir=data/0125-0135/RIGHT/img --result_file=output/iou/16m_right.txt --xymode
# if with team id
python src/utils/visualize.py --img_dir=data/0125-0135/RIGHT/img --result_file=output/tracktor/16m_right_prediction.txt --reid
# if 3d mode
python src/utils/visualize.py --img_dir=data/0125-0135/RIGHT/img --result_file=output/tracktor/RIGHT.txt --calib_file=data/calibration_results/0125-0135/RIGHT/calib.txt  --pitchmode

visualize 3d tracking result with ground truth and voronoi diagram

python src/utils/visualize_on_pitch.py --result_file=PATH_TO_TRACKING_RESULT --ground_truth=PATH_TO_GROUND_TRUTH

visualize 3d ground truth on camera frames (reprojection)

python src/utils/visualize_tracab --img_path=PATH_TO_IMAGES --calib_path=PATH_TO_CALIB --gt_path=PATH_TO_TRACAB_GT --output_path=PATH_TO_OUTPUT_VIDEO
  • Produce quantitative result
# 2d 
python src/motmetrics/apps/eval_motchallenge.py data/0125-0135/ output/tracktor_filtered

# 3d
python src/utils/eval3d.py --pred=output/pitch/EPTS_3_pitch.txt_EPTS_4_pitch.txt.txt --fixcam  --gt=data/fixedcam/gt_pitch_550.txt
python src/utils/eval3d.py --fixcam --boxplot

Acknowledgement

We would like to thank the following Github repos or softwares:

Authors

Yuchang Jiang, Tianyu Wu, Ying Jiao, Yelan Tao

Owner
Yuchang Jiang
Master student at ETH Zurich
Yuchang Jiang
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022