CS50's Introduction to Artificial Intelligence Test Scripts

Overview

CS50's Introduction to Artificial Intelligence Test Scripts

🤷‍♂️ What's this? 🤷‍♀️

This repository contains Python scripts to automate tests for most of the CS50’s Introduction to Artificial Intelligence with Python projects.

It does not contain any project solution/spoiler, as per the course's Academic Honesty policy.

Disclaimer

This is a student-initiated project. Passing these test cases does not guarantee that you will receive a full grade from the official CS50 AI's teaching team.

📖 Table of Contents

Lecture Concept Project Test Script Description
Search Breadth First Search Degrees degrees_test.py Run test cases given by problem description and this discussion
Search Minimax Tic-Tac-Toe tictactoe_test.py Let your AI play against itself for 10 rounds
Knowledge Model Checking Knights puzzle_test.py Check the correctness of the 4 puzzle results
Knowledge Knowledge Engineering Minesweeper minesweeper_test.py Check if your AI has ≈90% win rate over 1000 simulations
Uncertainty Bayesian Networks Heredity heredity_test.py Run test cases given by problem description and this discussion
Uncertainty Markov Models PageRank pagerank_test.py Compare the output of the 2 implemented functions
Optimization Constraint Satisfaction Crossword generate_test.py Generate crosswords using all 9 different structure + words combination and a special test case from this discussion
Learning Nearest-Neighbor Classification Shopping shopping_test.py Check the information is parsed correctly and result is within a reasonable range
Learning Reinforcement Learning Nim nim_test.py Check if the AI which moves second has a 100% win rate

🛠️ How to Run Tests

Guide

  1. Make sure you have Python3 installed in your machine. Anything above Python 3.4+ should work.
  2. Install pytest by running pip install pytest in a terminal. More information about pip here.
  3. Make a copy of the test file and paste it in the same folder as the project that you want to test.

    For example, if you want to test your code for degrees.py, make a copy of degrees_test.py in the same folder as your degrees.py and other files that came along with the project, like util.py, large/ and small/.

  4. Navigate to the project folder and run pytest or pytest _test.py in a terminal.

    For example, navigate to degrees/ and run pytest or pytest degrees_test.py.

Example

example

🚩 Useful pytest Flags

  • Run pytest -s to show print statements in the console
  • Run pytest -vv for verbose mode
  • Combine both flags pytest -s -vv for extra verbose mode
  • Run pytest --durations=n to see the n slowest execution time
  • Install pytest-repeat with pip and then run pytest --count n to repeat the test for n times

💻 My Setup

Each test should take less than 30 seconds, depending on Python's I/O and your code efficiency.

  • Windows 10 Home Build 19042
  • Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
  • Python 3.9.5 64-bit
  • Visual Studio Code w/Pylance (latest release)

🏆 Acknowledgement

Special thanks to these fellow CS50AI classmates who contributed some of the test cases on the Ed discussion site!

  • Ken Walker
  • Naveena A S
  • Ricardo L
Owner
Jet Kan
Tutor and Computer Science Undergraduate, National University of Singapore (NUS)
Jet Kan
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022