Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Related tags

Deep LearningLLKD
Overview

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

This repository contains the implementation of the following paper:

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images
Seonggwan Ko*, Jinsun Park*, Byungjoo Chae and Donghyeon Cho
Signal Processing Letters

Overview

Visual results

Requirements

The following packages must be installed to perform the proposed model:

  • PyTorch 1.7.1
  • torchvision 0.8.2
  • Pillow 8.2.0
  • TensorBoardX 2.2
  • tqdm

Test

Test datasets should be arranged as the following folder dataset/test.

dataset
│   ├── test
│   │   ├── LIME
│   │   ├── LOL
│   │   ├── DICM
│   │   └── ...
└── ...

If you set up the folder, you can make it run.

python test.py

Train

To train the proposed model, the following options are required:

python train.py --lowlight_images_path 'your_dataset_path' --gt_images_path 'your_GT_dataset_path' --pretrain_dir  'your_pretrain_path'

lowlight_images_path is the path of your low-light image

gt_images_path is the path of your ground-truth image

pretrain_dir is the path of your pretrained teacher model path

Dataset

We provide 10,000 training pairs and 387 test images.

Please click here if you want to download our dataset.

Dataset Creation

  • We collected 25,967 low-light images from BDD100k(4,830 images) and Dark Zurich(5,336 images), LoLi-Phone(6,442 images), ExDark(7,263 images), SICE(1,611), LOL(485 images).
  • Then, we generate pseudo well-exposed images using the pretrained EnlightenGAN, and additionally reduce noise using DnCNN.

Citation

 @ARTICLE{,
  author={S. {Ko} and J. {Park} and B. {Chae} and D. {Cho}},
  journal={IEEE Signal Processing Letters}, 
  title={Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images}, 
  year={2021}
}

License and Acknowledgement

The code framework is mainly modified from Zero-DCE, AdaBelief and SPKD. Please refer to the original repo for more usage and documents. Thanks to authors for sharing the codes!

Owner
Seonggwan Ko
Bachelor | Computer Science | Computer Vision & Image Processing |
Seonggwan Ko
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Özlem Taşkın 0 Feb 23, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022