Code Repository for Liquid Time-Constant Networks (LTCs)

Overview

Liquid time-constant Networks (LTCs)

[Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp

This is the official repository for LTC networks described in paper: https://arxiv.org/abs/2006.04439 This repository alows you to train continuous-time models with backpropagation through-time (BPTT). Available Continuous-time models are:

Models References
Liquid time-constant Networks https://arxiv.org/abs/2006.04439
Neural ODEs https://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
Continuous-time RNNs https://www.sciencedirect.com/science/article/abs/pii/S089360800580125X
Continuous-time Gated Recurrent Units (GRU) https://arxiv.org/abs/1710.04110

Requisites

All models were implemented tested with TensorFlow 1.14.0 and python3 on Ubuntu 16.04 and 18.04 machines. All following steps assume that they are executed under these conditions.

Preparation

First we have to download all datasets by running

source download_datasets.sh

This script creates a folder data, where all downloaded datasets are stored.

Training and evaluating the models

There is exactly one python module per dataset:

  • Hand gesture segmentation: gesture.py
  • Room occupancy detection: occupancy.py
  • Human activity recognition: har.py
  • Traffic volume prediction: traffic.py
  • Ozone level forecasting: ozone.py

Each script accepts the following four agruments:

  • --model: lstm | ctrnn | ltc | ltc_rk | ltc_ex
  • --epochs: number of training epochs (default 200)
  • --size: number of hidden RNN units (default 32)
  • --log: interval of how often to evaluate validation metric (default 1)

Each script trains the specified model for the given number of epochs and evalutates the validation performance after every log steps. At the end of training, the best performing checkpoint is restored and the model is evaluated on the test set. All results are stored in the results folder by appending the result to CSV-file.

For example, we can train and evaluate the CT-RNN by executing

python3 har.py --model ctrnn

After the script is finished there should be a file results/har/ctrnn_32.csv created, containing the following columns:

  • best epoch: Epoch number that achieved the best validation metric
  • train loss: Training loss achieved at the best epoch
  • train accuracy: Training metric achieved at the best epoch
  • valid loss: Validation loss achieved at the best epoch
  • valid accuracy: Best validation metric achieved during training
  • test loss: Loss on the test set
  • test accuracy: Metric on the test set

Hyperparameters

Parameter Value Description
Minibatch size 16 Number of training samples over which the gradient descent update is computed
Learning rate 0.001/0.02 0.01-0.02 for LTC, 0.001 for all other models.
Hidden units 32 Number of hidden units of each model
Optimizer Adam See (Kingma and Ba, 2014)
beta_1 0.9 Parameter of the Adam method
beta_2 0.999 Parameter of the Adam method
epsilon 1e-08 Epsilon-hat parameter of the Adam method
Number of epochs 200 Maximum number of training epochs
BPTT length 32 Backpropagation through time length in time-steps
ODE solver sreps 1/6 relative to input sampling period
Validation evaluation interval 1 Interval of training epochs when the metrics on the validation are evaluated

Trajectory Length Analysis

Run the main.m file to get trajectory length results for the desired setting tuneable in the code.

Owner
Ramin Hasani
deep learning
Ramin Hasani
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022