Pywonderland - A tour in the wonderland of math with python.

Overview

A Tour in the Wonderland of Math with Python

A collection of python scripts for drawing beautiful figures and animating interesting algorithms in mathematics.

About this repo

The purpose of this project is to show the beauty of math with python by rendering high quality images, videos and animations. It consists of several independent projects with each one illustrates a special object/algorithm in math. The current list contains:

  • Aperiodic tilings like Penrose tiling, Ammann-Beenker tiling, etc.
  • Triology on perfectly random sampling algorithms.
    1. Domino shuffling algorithm on Aztec diamonds.
    2. Wilson's uniform spanning tree algorithm on 2d grids.
    3. Coupling from the past algorithm on lozenge tilings.
  • Hopf fibration.
  • 3D and 4D Uniform polytopes.
  • 2D uniform tilings and 3D uniform honeycombs in Euclidean, spherical and hyperbolic spaces.
  • Make gif animations of various algorithms.
  • Lots of shader animations.
  • Miscellaneous scripts like E8 root system, Mandelbrot set, Newton's fractal, Lorenz attractor, etc.

These topics are chosen largely due to my personal taste:

  1. They must produce appealing results.
  2. There must be some non-trivial math behind them.
  3. The code should be as simple as possible.

I'll use only popular python libs and build all math stuff by hand (tools like sage, sympy, mathemetica will not be used here).

Gallery

The code for some of the images are not in the master branch, they can be found in the released version.

  • Uniform 3D and 4D polytopes

  • Möbius transformations

  • 3D Euclidean uniform honeycombs and their duals

  • Gray-Scott simulation

  • 3D hyperbolic uniform honeycombs

  • Limit set of rank 4 Coxeter groups

  • Aperiodic tilings

  • 3D Fractals

  • Coxeter automata and 2D Uniform tilings

  • GIF animations of various algorithms

  • Others

Many more to be comtinued ...

How to use

All projects here are implemented in a ready-to-use manner for new comers. You can simply run the examples without tweaking any parameters once you have the dependencies installed correctly.

Dependencies

The recommended way to install all dependencies is simply running the bash script install_dependencies.sh.

sudo bash install_dependencies.sh

Or you can install the python libs by pip:

pip install -r requirements.txt

Open source softwares required:

  • python3-tk (for file dialog)
  • ImageMagick (for making gif animations)
  • FFmpeg (for saving animations to video files)
  • POV-Ray (for generating high quality raytracing results)
  • graphviz (for drawing automata of Coxeter groups)
  • Inkscape (optional, for convering large svg files to png)

They can all be installed via command-line:

sudo apt-get install python3-tk imagemagick ffmpeg povray graphviz inkscape

Note pygraphviz also requires libgraphviz-dev:

sudo apt-get install libgraphviz-dev

In the scripts these softwares are called in command line as povray, ffmpeg, convert (from ImageMagick), etc. For Windows users you should add the directories contain these .exe files to the system Path environment variables to let the system know what executables these commands refer to. For example on Windows the default location of POV-Ray's exe file is C:\Program Files\POV-Ray\v3.7\bin\pvengine64.exe, so you should add C:\Program Files\POV-Ray\v3.7\bin to system Path and rename pvengine64.exe to povray.exe, then you can run the scripts without any changes and everything works fine.

Thanks

I have learned a lot from the following people:

License

see the LICENSE file.

Comments
  • Run pywonderland inside a Docker container

    Run pywonderland inside a Docker container

    Q: How can I work with pywonderland on my computer without installing all of the required libraries and modules into my operating system?

    A: Docker will allow you to create a Linux container running Python 3 where we can install pywonderland and all of its dependencies.

    opened by cclauss 19
  • Define raw_input() for Python 3

    Define raw_input() for Python 3

    input() is a different built-in function in Python 2 so we should not overwrite it. Also used strip() to eliminate leading or trailing whitespace in user input.

    opened by cclauss 6
  • Question about gifmaze module and pypi

    Question about gifmaze module and pypi

    Hello.

    I would lile to contribute to the gifmaze module, but I am a bit lost between the various versions of this code.

    So :

    • is this the "official" gifmaze.py source code repository ? :)
    • do you plan on publishing new version of gifmaze on pypi.org ?
    • are you willing to accept pull requests ?

    Regards

    opened by Lucas-C 4
  • [Feature request]Universal Random Structures in 2D

    [Feature request]Universal Random Structures in 2D

    Hi there, Really nice animations and super cool project! I am wondering if there is any plan to add Universal Random Structures in 2D (work by Scott Sheffield and Jason Miller). This Quanta article gives some good introduction, and there are more demo images here: http://statslab.cam.ac.uk/~jpm205/images.html

    opened by junpenglao 2
  • Suggestion: Conway's Game of Life

    Suggestion: Conway's Game of Life

    Suggesting another example. Here is a good reference for Python code implementing and explaining Conway's Game of Life: https://jakevdp.github.io/blog/2013/08/07/conways-game-of-life/

    opened by yoavram 2
  • Make fractal3d.py Python 3.8 ready

    Make fractal3d.py Python 3.8 ready

    The script fractal3d.py fails with Python 3.8, because time.clock() was removed from the Python API. (https://docs.python.org/3/whatsnew/3.8.html#api-and-feature-removals)

    In this PR i replaced time.clock() with time.process_time()

    opened by gsilvan 1
  • Use dictionary for parse_image to speed up image parsing.

    Use dictionary for parse_image to speed up image parsing.

    In parse_image, we do a membership check on colors, which is a list, and takes O(n) time. Using a dictionary is effectively a drop in replacement, but reduces lookup time to O(1), and offers a 5x speedup for the image for example4() in gifmaze/example_maze_animations (1.1421077s to 0.213111s)

    (Note that in Python 3.6+, dictionaries are ordered by default, but if you want to support 3.5 and below, OrderedDict is need)

    opened by philippeitis 1
  • Fix some bug risks and code quality issues

    Fix some bug risks and code quality issues

    Changes:

    • Remove unnecessary list comprehension
    • Make valid method a staticmethod
    • Remove unnecessary elif after return statement
    • Fix dangerous default argument.
    • Add .deepsource.toml file to file to run continuous static analysis on the repository with DeepSource

    This PR also adds .deepsource.toml configuration file to run static analysis continuously on the repo with DeepSource. Upon enabling DeepSource, quality and security analysis will be run on every PR to detect 500+ types of problems in the changes — including bug risks, anti-patterns, security vulnerabilities, etc.

    DeepSource is free to use for open-source projects, and is used by teams at NASA, Uber, Slack among many others, and open-source projects like ThoughtWorks/Gauge, Masonite Framework, etc.

    To enable DeepSource analysis after merging this PR, please follow these steps:

    • Sign up on DeepSource with your GitHub account and grant access to this repo.
    • Activate analysis on this repo here.
    • You can also look at the docs for more details. Do let me know if I can be of any help!
    opened by mohi7solanki 1
  • Error when runing e8.py

    Error when runing e8.py

    ---> 14 import cairocffi as cairo 15 import numpy as np 16 from palettable.colorbrewer.qualitative import Set1_8

    C:\Localdata\Software\PythonAnaconda\lib\site-packages\cairocffi_init_.py in () 14 import ctypes.util 15 ---> 16 from . import constants 17 from .compat import FileNotFoundError 18 from ._ffi import ffi

    ImportError: cannot import name constants

    opened by xhtp2000 1
  • docs: fix simple typo, representaion -> representation

    docs: fix simple typo, representaion -> representation

    There is a small typo in src/polytopes/polytopes/models.py.

    Should read representation rather than representaion.

    Semi-automated pull request generated by https://github.com/timgates42/meticulous/blob/master/docs/NOTE.md

    opened by timgates42 0
  • Add flake8 testing to Travis CI

    Add flake8 testing to Travis CI

    Each time someone adds code to this repo, CI automatically can run tests on it. The owner of the this repo would need to go to https://travis-ci.org/profile and flip the repository switch on to enable free automated flake8 testing on each pull request.

    opened by cclauss 0
  • (PYL-R1723) Unnecessary `else` / `elif` used after `break`

    (PYL-R1723) Unnecessary `else` / `elif` used after `break`

    Description

    The use of else or elif becomes redundant and can be dropped if the last statement under the leading if / elif block is a break statement. In the case of an elif after break, it can be written as a separate if block. For else blocks after break, the …

    Occurrences

    There is 1 occurrence of this issue in the repository.

    See all occurrences on DeepSource → deepsource.io/gh/neozhaoliang/pywonderland/issue/PYL-R1723/occurrences/

    opened by mayankgoyal-13 0
Releases(0.1.0)
Owner
Zhao Liang
My name is 赵亮 (Zhao Liang), since it's used by too many people I have to add a 'neo' prefix to sign up websites. I study and code math stuff.
Zhao Liang
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022