Byzantine-robust decentralized learning via self-centered clipping

Overview

Byzantine-robust decentralized learning via self-centered clipping

In this paper, we study the challenging task of Byzantine-robust decentralized training on arbitrary communication graphs. Unlike federated learning where workers communicate through a server, workers in the decentralized environment can only talk to their neighbors, making it harder to reach consensus. We identify a novel dissensus attack in which few malicious nodes can take advantage of information bottlenecks in the topology to poison the collaboration. To address these issues, we propose a Self-Centered Clipping (SSClip) algorithm for Byzantine-robust consensus and optimization, which is the first to provably converge to a $O(\delta_{\max}\zeta^2/\gamma^2)$ neighborhood of the stationary point for non-convex objectives under standard assumptions. Finally, we demonstrate the encouraging empirical performance of SSClip under a large number of attacks.

Table of contents

Code organization

The structure of the repository is as follows:

  • codes/
    • Source code.
  • outputs/
    • Store the output of the launcher scripts.
  • consensus.ipynb: Study the error of aggregators to the average consensus under dissensus attack.
    • This notebook generates Fig. 3 in the main text and Fig. 8 in the appendix.
  • dumbbell.py: Study how topology + heterogeneity influence on the aggregators.
  • dumbbell_improvement.py: Study how to help aggregators to address topology + heterogeneity influence.
  • dumbbell.ipynb: Plot the results of dumbbell.py and dumbbell_improvement.py.
    • Generate Fig. 4 in the main text.
  • optimization_delta.py: Fix p, zeta^2 and varying delta of dissensus attack for SCClip aggregator.
    • Generate Fig. 5 in the main text.
  • honest_majority.py: Study the influence of honest majority in the text.
    • Generate Fig. 6 in the main text.

Reproduction

To reproduce the results in the paper, do the following steps

  1. Add codes/ to environment variable PYTHONPATH
  2. Install the dependencies: pip install -r requirements.txt
  3. Run bash run.sh and select option 2 to 9 to generate the code.
  4. The output will be saved to the corresponding folders under outputs

Note that if the GPU memory is small (e.g. less than 16 GB), then running the previous commands may raise insufficient exception. In this case, one can decrease the level parallelism in the script by changing the order of loops and reduce the number of parallel processes.

License

This repo is covered under The MIT License.

Reference

TODO

Owner
EPFL Machine Learning and Optimization Laboratory
EPFL Machine Learning and Optimization Laboratory
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022