OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

Overview

OCTIS : Optimizing and Comparing Topic Models is Simple!

Documentation Status Contributors License

Logo

OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and comparing Topic Models, whose optimal hyper-parameters are estimated by means of a Bayesian Optimization approach.

Install

You can install OCTIS with the following command:

pip install octis

You can find the requirements in the requirements.txt file.

Features

  • Preprocess your own dataset or use one of the already-preprocessed benchmark datasets
  • Well-known topic models (both classical and neurals)
  • Evaluate your model using different state-of-the-art evaluation metrics
  • Optimize the models' hyperparameters for a given metric using Bayesian Optimization
  • Python library for advanced usage or simple web dashboard for starting and controlling the optimization experiments

Examples and Tutorials

To easily understand how to use OCTIS, we invite you to try our tutorials out :)

Name Link
How to build a topic model and evaluate the results (LDA on 20Newsgroups) Open In Colab
How to optimize the hyperparameters of a neural topic model (CTM on M10) Open In Colab

Load a preprocessed dataset

To load one of the already preprocessed datasets as follows:

from octis.dataset.dataset import Dataset
dataset = Dataset()
dataset.fetch_dataset("20NewsGroup")

Just use one of the dataset names listed below. Note: it is case-sensitive!

Available Datasets

Name Source # Docs # Words # Labels
20NewsGroup 20Newsgroup 16309 1612 20
BBC_News BBC-News 2225 2949 5
DBLP DBLP 54595 1513 4
M10 M10 8355 1696 10

Otherwise, you can load a custom preprocessed dataset in the following way:

from octis.dataset.dataset import Dataset
dataset = Dataset()
dataset.load_custom_dataset_from_folder("../path/to/the/dataset/folder")
Make sure that the dataset is in the following format:
  • corpus file: a .tsv file (tab-separated) that contains up to three columns, i.e. the document, the partitition, and the label associated to the document (optional).
  • vocabulary: a .txt file where each line represents a word of the vocabulary

The partition can be "training", "test" or "validation". An example of dataset can be found here: sample_dataset_.

Disclaimer

Similarly to TensorFlow Datasets and HuggingFace's nlp library, we just downloaded and prepared public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license and to cite the right owner of the dataset.

If you're a dataset owner and wish to update any part of it, or do not want your dataset to be included in this library, please get in touch through a GitHub issue.

If you're a dataset owner and wish to include your dataset in this library, please get in touch through a GitHub issue.

Preprocess

To preprocess a dataset, import the preprocessing class and use the preprocess_dataset method.

import os
import string
from octis.preprocessing.preprocessing import Preprocessing
os.chdir(os.path.pardir)

# Initialize preprocessing
p = Preprocessing(vocabulary=None, max_features=None, remove_punctuation=True, punctuation=string.punctuation,
                  lemmatize=True, remove_stopwords=True, stopword_list=['am', 'are', 'this', 'that'],
                  min_chars=1, min_words_docs=0)
# preprocess
dataset = p.preprocess_dataset(documents_path=r'..\corpus.txt', labels_path=r'..\labels.txt')

# save the preprocessed dataset
dataset.save('hello_dataset')

For more details on the preprocessing see the preprocessing demo example in the examples folder.

Train a model

To build a model, load a preprocessed dataset, set the model hyperparameters and use train_model() to train the model.

from octis.dataset.dataset import Dataset
from octis.models.LDA import LDA

# Load a dataset
dataset = Dataset()
dataset.load_custom_dataset_from_folder("dataset_folder")

model = LDA(num_topics=25)  # Create model
model_output = model.train_model(dataset) # Train the model

If the dataset is partitioned, you can:

  • Train the model on the training set and test it on the test documents
  • Train the model with the whole dataset, regardless of any partition.

Evaluate a model

To evaluate a model, choose a metric and use the score() method of the metric class.

from octis.evaluation_metrics.diversity_metrics import TopicDiversity

metric = TopicDiversity(topk=10) # Initialize metric
topic_diversity_score = metric.score(model_output) # Compute score of the metric

Available metrics

Classification Metrics:

  • F1 measure (F1Score())
  • Precision (PrecisionScore())
  • Recall (RecallScore())
  • Accuracy (AccuracyScore())

Coherence Metrics:

  • UMass Coherence (Coherence({'measure':'c_umass'})
  • C_V Coherence (Coherence({'measure':'c_v'})
  • UCI Coherence (Coherence({'measure':'c_uci'})
  • NPMI Coherence (Coherence({'measure':'c_npmi'})
  • Word Embedding-based Coherence Pairwise (WECoherencePairwise())
  • Word Embedding-based Coherence Centroid (WECoherenceCentroid())

Diversity Metrics:

  • Topic Diversity (TopicDiversity())
  • InvertedRBO (InvertedRBO())
  • Word Embedding-based InvertedRBO (WordEmbeddingsInvertedRBO())
  • Word Embedding-based InvertedRBO centroid (WordEmbeddingsInvertedRBOCentroid())

Topic significance Metrics:

  • KL Uniform (KL_uniform())
  • KL Vacuous (KL_vacuous())
  • KL Background (KL_background())

Optimize a model

To optimize a model you need to select a dataset, a metric and the search space of the hyperparameters to optimize. For the types of the hyperparameters, we use scikit-optimize types (https://scikit-optimize.github.io/stable/modules/space.html)

from octis.optimization.optimizer import Optimizer
from skopt.space.space import Real

# Define the search space. To see which hyperparameters to optimize, see the topic model's initialization signature
search_space = {"alpha": Real(low=0.001, high=5.0), "eta": Real(low=0.001, high=5.0)}

# Initialize an optimizer object and start the optimization.
optimizer=Optimizer()
optResult=optimizer.optimize(model, dataset, eval_metric, search_space, save_path="../results" # path to store the results
                             number_of_call=30, # number of optimization iterations
                             model_runs=5) # number of runs of the topic model
#save the results of th optimization in a csv file
optResult.save_to_csv("results.csv")

The result will provide best-seen value of the metric with the corresponding hyperparameter configuration, and the hyperparameters and metric value for each iteration of the optimization. To visualize this information, you have to set 'plot' attribute of Bayesian_optimization to True.

You can find more here: optimizer README

Available Models

Name Implementation
CTM (Bianchi et al. 2020) https://github.com/MilaNLProc/contextualized-topic-models
ETM (Dieng et al. 2020) https://github.com/adjidieng/ETM
HDP (Blei et al. 2004) https://radimrehurek.com/gensim/
LDA (Blei et al. 2003) https://radimrehurek.com/gensim/
LSI (Landauer et al. 1998) https://radimrehurek.com/gensim/
NMF (Lee and Seung 2000) https://radimrehurek.com/gensim/
NeuralLDA (Srivastava and Sutton 2017) https://github.com/estebandito22/PyTorchAVITM
ProdLda (Srivastava and Sutton 2017) https://github.com/estebandito22/PyTorchAVITM

If you use one of these implementations, make sure to cite the right paper.

If you implemented a model and wish to update any part of it, or do not want your model to be included in this library, please get in touch through a GitHub issue.

If you implemented a model and wish to include your model in this library, please get in touch through a GitHub issue. Otherwise, if you want to include the model by yourself, see the following section.

Implement your own Model

Models inherit from the class AbstractModel defined in octis/models/model.py . To build your own model your class must override the train_model(self, dataset, hyperparameters) method which always requires at least a Dataset object and a Dictionary of hyperparameters as input and should return a dictionary with the output of the model as output.

To better understand how a model work, let's have a look at the LDA implementation. The first step in developing a custom model is to define the dictionary of default hyperparameters values:

hyperparameters = {'corpus': None, 'num_topics': 100, 'id2word': None, 'alpha': 'symmetric',
    'eta': None, # ...
    'callbacks': None}

Defining the default hyperparameters values allows users to work on a subset of them without having to assign a value to each parameter.

The following step is the train_model() override:

def train_model(self, dataset, hyperparameters={}, top_words=10):

The LDA method requires a dataset, the hyperparameters dictionary and an extra (optional) argument used to select how many of the most significative words track for each topic.

With the hyperparameters defaults, the ones in input and the dataset you should be able to write your own code and return as output a dictionary with at least 3 entries:

  • topics: the list of the most significative words foreach topic (list of lists of strings).
  • topic-word-matrix: an NxV matrix of weights where N is the number of topics and V is the vocabulary length.
  • topic-document-matrix: an NxD matrix of weights where N is the number of topics and D is the number of documents in the corpus.

if your model supports the training/test partitioning it should also return:

  • test-topic-document-matrix: the document topic matrix of the test set.

Dashboard

OCTIS includes a user friendly graphical interface for creating, monitoring and viewing experiments. Following the implementation standards of datasets, models and metrics the dashboard will automatically update and allow you to use your own custom implementations.

To run rhe dashboard, while in the project directory run the following command:

python OCTIS/dashboard/server.py

The browser will open and you will be redirected to the dashboard. In the dashboard you can:

  • Create new experiments organized in batch
  • Visualize and compare all the experiments
  • Visualize a custom experiment
  • Manage the experiment queue

How to cite our work

This work has been accepted at the demo track of EACL 2021! You can find it here: https://www.aclweb.org/anthology/2021.eacl-demos.31/ If you decide to use this resource, please cite:

@inproceedings{terragni2020octis,
    title={{OCTIS}: Comparing and Optimizing Topic Models is Simple!},
    author={Terragni, Silvia and Fersini, Elisabetta and Galuzzi, Bruno Giovanni and Tropeano, Pietro and Candelieri, Antonio},
    year={2021},
    booktitle={Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations},
    month = apr,
    year = "2021",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.eacl-demos.31",
    pages = "263--270",
}

Team

Project and Development Lead

Current Contributors

Past Contributors

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template. Thanks to all the developers that released their topic models' implementations.

Owner
MIND
MIND
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022