OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

Overview

OCTIS : Optimizing and Comparing Topic Models is Simple!

Documentation Status Contributors License

Logo

OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and comparing Topic Models, whose optimal hyper-parameters are estimated by means of a Bayesian Optimization approach.

Install

You can install OCTIS with the following command:

pip install octis

You can find the requirements in the requirements.txt file.

Features

  • Preprocess your own dataset or use one of the already-preprocessed benchmark datasets
  • Well-known topic models (both classical and neurals)
  • Evaluate your model using different state-of-the-art evaluation metrics
  • Optimize the models' hyperparameters for a given metric using Bayesian Optimization
  • Python library for advanced usage or simple web dashboard for starting and controlling the optimization experiments

Examples and Tutorials

To easily understand how to use OCTIS, we invite you to try our tutorials out :)

Name Link
How to build a topic model and evaluate the results (LDA on 20Newsgroups) Open In Colab
How to optimize the hyperparameters of a neural topic model (CTM on M10) Open In Colab

Load a preprocessed dataset

To load one of the already preprocessed datasets as follows:

from octis.dataset.dataset import Dataset
dataset = Dataset()
dataset.fetch_dataset("20NewsGroup")

Just use one of the dataset names listed below. Note: it is case-sensitive!

Available Datasets

Name Source # Docs # Words # Labels
20NewsGroup 20Newsgroup 16309 1612 20
BBC_News BBC-News 2225 2949 5
DBLP DBLP 54595 1513 4
M10 M10 8355 1696 10

Otherwise, you can load a custom preprocessed dataset in the following way:

from octis.dataset.dataset import Dataset
dataset = Dataset()
dataset.load_custom_dataset_from_folder("../path/to/the/dataset/folder")
Make sure that the dataset is in the following format:
  • corpus file: a .tsv file (tab-separated) that contains up to three columns, i.e. the document, the partitition, and the label associated to the document (optional).
  • vocabulary: a .txt file where each line represents a word of the vocabulary

The partition can be "training", "test" or "validation". An example of dataset can be found here: sample_dataset_.

Disclaimer

Similarly to TensorFlow Datasets and HuggingFace's nlp library, we just downloaded and prepared public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license and to cite the right owner of the dataset.

If you're a dataset owner and wish to update any part of it, or do not want your dataset to be included in this library, please get in touch through a GitHub issue.

If you're a dataset owner and wish to include your dataset in this library, please get in touch through a GitHub issue.

Preprocess

To preprocess a dataset, import the preprocessing class and use the preprocess_dataset method.

import os
import string
from octis.preprocessing.preprocessing import Preprocessing
os.chdir(os.path.pardir)

# Initialize preprocessing
p = Preprocessing(vocabulary=None, max_features=None, remove_punctuation=True, punctuation=string.punctuation,
                  lemmatize=True, remove_stopwords=True, stopword_list=['am', 'are', 'this', 'that'],
                  min_chars=1, min_words_docs=0)
# preprocess
dataset = p.preprocess_dataset(documents_path=r'..\corpus.txt', labels_path=r'..\labels.txt')

# save the preprocessed dataset
dataset.save('hello_dataset')

For more details on the preprocessing see the preprocessing demo example in the examples folder.

Train a model

To build a model, load a preprocessed dataset, set the model hyperparameters and use train_model() to train the model.

from octis.dataset.dataset import Dataset
from octis.models.LDA import LDA

# Load a dataset
dataset = Dataset()
dataset.load_custom_dataset_from_folder("dataset_folder")

model = LDA(num_topics=25)  # Create model
model_output = model.train_model(dataset) # Train the model

If the dataset is partitioned, you can:

  • Train the model on the training set and test it on the test documents
  • Train the model with the whole dataset, regardless of any partition.

Evaluate a model

To evaluate a model, choose a metric and use the score() method of the metric class.

from octis.evaluation_metrics.diversity_metrics import TopicDiversity

metric = TopicDiversity(topk=10) # Initialize metric
topic_diversity_score = metric.score(model_output) # Compute score of the metric

Available metrics

Classification Metrics:

  • F1 measure (F1Score())
  • Precision (PrecisionScore())
  • Recall (RecallScore())
  • Accuracy (AccuracyScore())

Coherence Metrics:

  • UMass Coherence (Coherence({'measure':'c_umass'})
  • C_V Coherence (Coherence({'measure':'c_v'})
  • UCI Coherence (Coherence({'measure':'c_uci'})
  • NPMI Coherence (Coherence({'measure':'c_npmi'})
  • Word Embedding-based Coherence Pairwise (WECoherencePairwise())
  • Word Embedding-based Coherence Centroid (WECoherenceCentroid())

Diversity Metrics:

  • Topic Diversity (TopicDiversity())
  • InvertedRBO (InvertedRBO())
  • Word Embedding-based InvertedRBO (WordEmbeddingsInvertedRBO())
  • Word Embedding-based InvertedRBO centroid (WordEmbeddingsInvertedRBOCentroid())

Topic significance Metrics:

  • KL Uniform (KL_uniform())
  • KL Vacuous (KL_vacuous())
  • KL Background (KL_background())

Optimize a model

To optimize a model you need to select a dataset, a metric and the search space of the hyperparameters to optimize. For the types of the hyperparameters, we use scikit-optimize types (https://scikit-optimize.github.io/stable/modules/space.html)

from octis.optimization.optimizer import Optimizer
from skopt.space.space import Real

# Define the search space. To see which hyperparameters to optimize, see the topic model's initialization signature
search_space = {"alpha": Real(low=0.001, high=5.0), "eta": Real(low=0.001, high=5.0)}

# Initialize an optimizer object and start the optimization.
optimizer=Optimizer()
optResult=optimizer.optimize(model, dataset, eval_metric, search_space, save_path="../results" # path to store the results
                             number_of_call=30, # number of optimization iterations
                             model_runs=5) # number of runs of the topic model
#save the results of th optimization in a csv file
optResult.save_to_csv("results.csv")

The result will provide best-seen value of the metric with the corresponding hyperparameter configuration, and the hyperparameters and metric value for each iteration of the optimization. To visualize this information, you have to set 'plot' attribute of Bayesian_optimization to True.

You can find more here: optimizer README

Available Models

Name Implementation
CTM (Bianchi et al. 2020) https://github.com/MilaNLProc/contextualized-topic-models
ETM (Dieng et al. 2020) https://github.com/adjidieng/ETM
HDP (Blei et al. 2004) https://radimrehurek.com/gensim/
LDA (Blei et al. 2003) https://radimrehurek.com/gensim/
LSI (Landauer et al. 1998) https://radimrehurek.com/gensim/
NMF (Lee and Seung 2000) https://radimrehurek.com/gensim/
NeuralLDA (Srivastava and Sutton 2017) https://github.com/estebandito22/PyTorchAVITM
ProdLda (Srivastava and Sutton 2017) https://github.com/estebandito22/PyTorchAVITM

If you use one of these implementations, make sure to cite the right paper.

If you implemented a model and wish to update any part of it, or do not want your model to be included in this library, please get in touch through a GitHub issue.

If you implemented a model and wish to include your model in this library, please get in touch through a GitHub issue. Otherwise, if you want to include the model by yourself, see the following section.

Implement your own Model

Models inherit from the class AbstractModel defined in octis/models/model.py . To build your own model your class must override the train_model(self, dataset, hyperparameters) method which always requires at least a Dataset object and a Dictionary of hyperparameters as input and should return a dictionary with the output of the model as output.

To better understand how a model work, let's have a look at the LDA implementation. The first step in developing a custom model is to define the dictionary of default hyperparameters values:

hyperparameters = {'corpus': None, 'num_topics': 100, 'id2word': None, 'alpha': 'symmetric',
    'eta': None, # ...
    'callbacks': None}

Defining the default hyperparameters values allows users to work on a subset of them without having to assign a value to each parameter.

The following step is the train_model() override:

def train_model(self, dataset, hyperparameters={}, top_words=10):

The LDA method requires a dataset, the hyperparameters dictionary and an extra (optional) argument used to select how many of the most significative words track for each topic.

With the hyperparameters defaults, the ones in input and the dataset you should be able to write your own code and return as output a dictionary with at least 3 entries:

  • topics: the list of the most significative words foreach topic (list of lists of strings).
  • topic-word-matrix: an NxV matrix of weights where N is the number of topics and V is the vocabulary length.
  • topic-document-matrix: an NxD matrix of weights where N is the number of topics and D is the number of documents in the corpus.

if your model supports the training/test partitioning it should also return:

  • test-topic-document-matrix: the document topic matrix of the test set.

Dashboard

OCTIS includes a user friendly graphical interface for creating, monitoring and viewing experiments. Following the implementation standards of datasets, models and metrics the dashboard will automatically update and allow you to use your own custom implementations.

To run rhe dashboard, while in the project directory run the following command:

python OCTIS/dashboard/server.py

The browser will open and you will be redirected to the dashboard. In the dashboard you can:

  • Create new experiments organized in batch
  • Visualize and compare all the experiments
  • Visualize a custom experiment
  • Manage the experiment queue

How to cite our work

This work has been accepted at the demo track of EACL 2021! You can find it here: https://www.aclweb.org/anthology/2021.eacl-demos.31/ If you decide to use this resource, please cite:

@inproceedings{terragni2020octis,
    title={{OCTIS}: Comparing and Optimizing Topic Models is Simple!},
    author={Terragni, Silvia and Fersini, Elisabetta and Galuzzi, Bruno Giovanni and Tropeano, Pietro and Candelieri, Antonio},
    year={2021},
    booktitle={Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations},
    month = apr,
    year = "2021",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.eacl-demos.31",
    pages = "263--270",
}

Team

Project and Development Lead

Current Contributors

Past Contributors

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template. Thanks to all the developers that released their topic models' implementations.

Owner
MIND
MIND
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022