OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

Overview

OCTIS : Optimizing and Comparing Topic Models is Simple!

Documentation Status Contributors License

Logo

OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and comparing Topic Models, whose optimal hyper-parameters are estimated by means of a Bayesian Optimization approach.

Install

You can install OCTIS with the following command:

pip install octis

You can find the requirements in the requirements.txt file.

Features

  • Preprocess your own dataset or use one of the already-preprocessed benchmark datasets
  • Well-known topic models (both classical and neurals)
  • Evaluate your model using different state-of-the-art evaluation metrics
  • Optimize the models' hyperparameters for a given metric using Bayesian Optimization
  • Python library for advanced usage or simple web dashboard for starting and controlling the optimization experiments

Examples and Tutorials

To easily understand how to use OCTIS, we invite you to try our tutorials out :)

Name Link
How to build a topic model and evaluate the results (LDA on 20Newsgroups) Open In Colab
How to optimize the hyperparameters of a neural topic model (CTM on M10) Open In Colab

Load a preprocessed dataset

To load one of the already preprocessed datasets as follows:

from octis.dataset.dataset import Dataset
dataset = Dataset()
dataset.fetch_dataset("20NewsGroup")

Just use one of the dataset names listed below. Note: it is case-sensitive!

Available Datasets

Name Source # Docs # Words # Labels
20NewsGroup 20Newsgroup 16309 1612 20
BBC_News BBC-News 2225 2949 5
DBLP DBLP 54595 1513 4
M10 M10 8355 1696 10

Otherwise, you can load a custom preprocessed dataset in the following way:

from octis.dataset.dataset import Dataset
dataset = Dataset()
dataset.load_custom_dataset_from_folder("../path/to/the/dataset/folder")
Make sure that the dataset is in the following format:
  • corpus file: a .tsv file (tab-separated) that contains up to three columns, i.e. the document, the partitition, and the label associated to the document (optional).
  • vocabulary: a .txt file where each line represents a word of the vocabulary

The partition can be "training", "test" or "validation". An example of dataset can be found here: sample_dataset_.

Disclaimer

Similarly to TensorFlow Datasets and HuggingFace's nlp library, we just downloaded and prepared public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license and to cite the right owner of the dataset.

If you're a dataset owner and wish to update any part of it, or do not want your dataset to be included in this library, please get in touch through a GitHub issue.

If you're a dataset owner and wish to include your dataset in this library, please get in touch through a GitHub issue.

Preprocess

To preprocess a dataset, import the preprocessing class and use the preprocess_dataset method.

import os
import string
from octis.preprocessing.preprocessing import Preprocessing
os.chdir(os.path.pardir)

# Initialize preprocessing
p = Preprocessing(vocabulary=None, max_features=None, remove_punctuation=True, punctuation=string.punctuation,
                  lemmatize=True, remove_stopwords=True, stopword_list=['am', 'are', 'this', 'that'],
                  min_chars=1, min_words_docs=0)
# preprocess
dataset = p.preprocess_dataset(documents_path=r'..\corpus.txt', labels_path=r'..\labels.txt')

# save the preprocessed dataset
dataset.save('hello_dataset')

For more details on the preprocessing see the preprocessing demo example in the examples folder.

Train a model

To build a model, load a preprocessed dataset, set the model hyperparameters and use train_model() to train the model.

from octis.dataset.dataset import Dataset
from octis.models.LDA import LDA

# Load a dataset
dataset = Dataset()
dataset.load_custom_dataset_from_folder("dataset_folder")

model = LDA(num_topics=25)  # Create model
model_output = model.train_model(dataset) # Train the model

If the dataset is partitioned, you can:

  • Train the model on the training set and test it on the test documents
  • Train the model with the whole dataset, regardless of any partition.

Evaluate a model

To evaluate a model, choose a metric and use the score() method of the metric class.

from octis.evaluation_metrics.diversity_metrics import TopicDiversity

metric = TopicDiversity(topk=10) # Initialize metric
topic_diversity_score = metric.score(model_output) # Compute score of the metric

Available metrics

Classification Metrics:

  • F1 measure (F1Score())
  • Precision (PrecisionScore())
  • Recall (RecallScore())
  • Accuracy (AccuracyScore())

Coherence Metrics:

  • UMass Coherence (Coherence({'measure':'c_umass'})
  • C_V Coherence (Coherence({'measure':'c_v'})
  • UCI Coherence (Coherence({'measure':'c_uci'})
  • NPMI Coherence (Coherence({'measure':'c_npmi'})
  • Word Embedding-based Coherence Pairwise (WECoherencePairwise())
  • Word Embedding-based Coherence Centroid (WECoherenceCentroid())

Diversity Metrics:

  • Topic Diversity (TopicDiversity())
  • InvertedRBO (InvertedRBO())
  • Word Embedding-based InvertedRBO (WordEmbeddingsInvertedRBO())
  • Word Embedding-based InvertedRBO centroid (WordEmbeddingsInvertedRBOCentroid())

Topic significance Metrics:

  • KL Uniform (KL_uniform())
  • KL Vacuous (KL_vacuous())
  • KL Background (KL_background())

Optimize a model

To optimize a model you need to select a dataset, a metric and the search space of the hyperparameters to optimize. For the types of the hyperparameters, we use scikit-optimize types (https://scikit-optimize.github.io/stable/modules/space.html)

from octis.optimization.optimizer import Optimizer
from skopt.space.space import Real

# Define the search space. To see which hyperparameters to optimize, see the topic model's initialization signature
search_space = {"alpha": Real(low=0.001, high=5.0), "eta": Real(low=0.001, high=5.0)}

# Initialize an optimizer object and start the optimization.
optimizer=Optimizer()
optResult=optimizer.optimize(model, dataset, eval_metric, search_space, save_path="../results" # path to store the results
                             number_of_call=30, # number of optimization iterations
                             model_runs=5) # number of runs of the topic model
#save the results of th optimization in a csv file
optResult.save_to_csv("results.csv")

The result will provide best-seen value of the metric with the corresponding hyperparameter configuration, and the hyperparameters and metric value for each iteration of the optimization. To visualize this information, you have to set 'plot' attribute of Bayesian_optimization to True.

You can find more here: optimizer README

Available Models

Name Implementation
CTM (Bianchi et al. 2020) https://github.com/MilaNLProc/contextualized-topic-models
ETM (Dieng et al. 2020) https://github.com/adjidieng/ETM
HDP (Blei et al. 2004) https://radimrehurek.com/gensim/
LDA (Blei et al. 2003) https://radimrehurek.com/gensim/
LSI (Landauer et al. 1998) https://radimrehurek.com/gensim/
NMF (Lee and Seung 2000) https://radimrehurek.com/gensim/
NeuralLDA (Srivastava and Sutton 2017) https://github.com/estebandito22/PyTorchAVITM
ProdLda (Srivastava and Sutton 2017) https://github.com/estebandito22/PyTorchAVITM

If you use one of these implementations, make sure to cite the right paper.

If you implemented a model and wish to update any part of it, or do not want your model to be included in this library, please get in touch through a GitHub issue.

If you implemented a model and wish to include your model in this library, please get in touch through a GitHub issue. Otherwise, if you want to include the model by yourself, see the following section.

Implement your own Model

Models inherit from the class AbstractModel defined in octis/models/model.py . To build your own model your class must override the train_model(self, dataset, hyperparameters) method which always requires at least a Dataset object and a Dictionary of hyperparameters as input and should return a dictionary with the output of the model as output.

To better understand how a model work, let's have a look at the LDA implementation. The first step in developing a custom model is to define the dictionary of default hyperparameters values:

hyperparameters = {'corpus': None, 'num_topics': 100, 'id2word': None, 'alpha': 'symmetric',
    'eta': None, # ...
    'callbacks': None}

Defining the default hyperparameters values allows users to work on a subset of them without having to assign a value to each parameter.

The following step is the train_model() override:

def train_model(self, dataset, hyperparameters={}, top_words=10):

The LDA method requires a dataset, the hyperparameters dictionary and an extra (optional) argument used to select how many of the most significative words track for each topic.

With the hyperparameters defaults, the ones in input and the dataset you should be able to write your own code and return as output a dictionary with at least 3 entries:

  • topics: the list of the most significative words foreach topic (list of lists of strings).
  • topic-word-matrix: an NxV matrix of weights where N is the number of topics and V is the vocabulary length.
  • topic-document-matrix: an NxD matrix of weights where N is the number of topics and D is the number of documents in the corpus.

if your model supports the training/test partitioning it should also return:

  • test-topic-document-matrix: the document topic matrix of the test set.

Dashboard

OCTIS includes a user friendly graphical interface for creating, monitoring and viewing experiments. Following the implementation standards of datasets, models and metrics the dashboard will automatically update and allow you to use your own custom implementations.

To run rhe dashboard, while in the project directory run the following command:

python OCTIS/dashboard/server.py

The browser will open and you will be redirected to the dashboard. In the dashboard you can:

  • Create new experiments organized in batch
  • Visualize and compare all the experiments
  • Visualize a custom experiment
  • Manage the experiment queue

How to cite our work

This work has been accepted at the demo track of EACL 2021! You can find it here: https://www.aclweb.org/anthology/2021.eacl-demos.31/ If you decide to use this resource, please cite:

@inproceedings{terragni2020octis,
    title={{OCTIS}: Comparing and Optimizing Topic Models is Simple!},
    author={Terragni, Silvia and Fersini, Elisabetta and Galuzzi, Bruno Giovanni and Tropeano, Pietro and Candelieri, Antonio},
    year={2021},
    booktitle={Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations},
    month = apr,
    year = "2021",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.eacl-demos.31",
    pages = "263--270",
}

Team

Project and Development Lead

Current Contributors

Past Contributors

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template. Thanks to all the developers that released their topic models' implementations.

Owner
MIND
MIND
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022