Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Overview

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

This repository contains the code to reproduce the results from the paper. Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code or paper useful, please consider citing

@inproceedings{NeuralPull,
    title = {Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces},
    author = {Baorui, Ma and Zhizhong, Han and Yu-shen, Liu and Matthias, Zwicker},
    booktitle = {International Conference on Machine Learning (ICML)},
    year = {2021}
}

Surface Reconstruction Demo

Single Image Reconstruction Demo

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called tensorflow1 using

conda env create -f NeuralPull.yaml
conda activate tensorflow1

Next, for evaluation of the models,compile the extension modules, which are provided by Occupancy Networks. You can do this via

python setup.py build_ext --inplace

To compile the dmc extension, you have to have a cuda enabled device set up. If you experience any errors, you can simply comment out the dmc_* dependencies in setup.py. You should then also comment out the dmc imports in im2mesh/config.py.

Dataset and pretrained model

  1. You can download our preprocessed data and pretrained model.Included in the link:

    --Our pre-train model on ABC and FAMOUS dataset.

    --Preprocessing data of ABC and FAMOUS(sample points and ground truth points).

    --Our reconstruction results.

  2. To make it easier for you to test the code, we have prepared exmaple data in the exmaple_data folder.

Building the dataset

Alternatively, you can also preprocess the dataset yourself. To this end, you have to follow the following steps:

  • Put your own pointcloud files in 'input_dir' folder, each pointcloud file in a separate .xyz.npy file.
  • Set an empty folder 'out_dir' to place the processed data, note, the folder need to be empty, because this folder will be deleted before the program runs.

You are now ready to build the dataset:

python sample_query_point --out_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --CUDA 0 --dataset other --input_dir ./data/abc_noisefree/04_pts/ 

Training

You can train a new network from scratch, run

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --class_name plane
  1. Train the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset other

Evaluation

For evaluation of the models and generation meshes using a trained model, use

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --class_name plane
  1. Evaluation the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset other

Script Parameters Explanation

Parameters Description
train train or test a network.
data_dir preprocessed data.
out_dir store network parameters when training or to load pretrained network parameters when testing.
class_idx the class to train or test when using shapenet dataset, other dataset, default.
class_name the class to train or test when using shapenet dataset, other dataset, default.
dataset shapenet,famous,ABC or other(your dataset)

Pytorch Implementation of Neural-Pull

Notably, the code in Pytorch implementation is not released by the official lab, it is achieved by @wzxshgz123's diligent work. His intention is only to provide references to researchers who are interested in Pytorch implementation of Neural-Pull. There is no doubt that his unconditional dedication should be appreciated.

Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023