Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

Overview

NeonatalSeizureDetection

Description

Link: https://arxiv.org/abs/2111.15569

Citation:

@misc{nagarajan2021scalable,
      title={Scalable Machine Learning Architecture for Neonatal Seizure Detection on Ultra-Edge Devices}, 
      author={Vishal Nagarajan and Ashwini Muralidharan and Deekshitha Sriraman and Pravin Kumar S},
      year={2021},
      eprint={2111.15569},
      archivePrefix={arXiv},
      primaryClass={eess.SP}
}

This repository contains code for the implementation of the paper titled "Scalable Machine Learning Architecture for Neonatal Seizure Detection on Ultra-Edge Devices", which has been accepted at the AISP '22: 2nd International Conference on Artificial Intelligence and Signal Processing. A typical neonatal seizure and non-seizure event is illustrated below. Continuous EEG signals are filtered and segmented with varying window lengths of 1, 2, 4, 8, and 16 seconds. The data used here for experimentation can be downloaded from here.

Seizure Event Non-seizure Event

This end-to-end architecture receives raw EEG signal, processes it and classifies it as ictal or normal activity. After preprocessing, the signal is passed to a feature extraction engine that extracts the necessary feature set Fd. It is followed by a scalable machine learning (ML) classifier that performs prediction as illustrated in the figure below.

Pipeline Architecture

Files description

  1. dataprocessing.ipynb -> Notebook for converting edf files to csv files.
  2. filtering.ipynb -> Notebook for filtering the input EEG signals in order to observe the specific frequencies.
  3. segmentation.ipynb -> Notebook for segmenting the input into appropriate windows lengths and overlaps.
  4. features_final.ipynb -> Notebook for extracting relevant features from segmented data.
  5. protoNN_example.py -> Script used for running protoNN model using .npy files.
  6. inference_time.py -> Script used to record and report inference times.
  7. knn.ipynb -> Notebook used to compare results of ProtoNN and kNN models.

Dependencies

If you are using conda, it is recommended to switch to a new environment.

    $ conda create -n myenv
    $ conda activate myenv
    $ conda install pip
    $ pip install -r requirements.txt

If you wish to use virtual environment,

    $ pip install virtualenv
    $ virtualenv myenv
    $ source myenv/bin/activate
    $ pip install -r requirements.txt

Usage

  1. Clone the ProtoNN package from here, antropy package from here, and envelope_derivative_operator package from here.

  2. Replace the protoNN_example.py with protoNN_example.py.

  3. Prepare the train and test data .npy files and save it in a DATA_DIR directory.

  4. Execute the following command in terminal after preparing the data files. Create an output directory should you need to save the weights of the ProtoNN object as OUT_DIR.

        $ python protoNN_example.py -d DATA_DIR -e 500 -o OUT_DIR
    

Authors

Vishal Nagarajan

Ashwini Muralidharan

Deekshitha Sriraman

Acknowledgements

ProtoNN built using EdgeML provided by Microsoft. Features extracted using antropy and otoolej repositories.

References

[1] Nathan Stevenson, Karoliina Tapani, Leena Lauronen, & Sampsa Vanhatalo. (2018). A dataset of neonatal EEG recordings with seizures annotations [Data set]. Zenodo. https://doi.org/10.5281/zenodo.1280684.

[2] Gupta, Ankit et al. "ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices." Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70.

Owner
Vishal Nagarajan
Undergraduate ML Research Assistant at Solarillion Foundation B.E. (CSE) @ SSNCE
Vishal Nagarajan
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022