Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Overview

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations

Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop Shared Visual Representations in Human and Machine Intelligence (SVRHM). OpenReviews

Is it possible that human learn their visual representations with a self-supervised learning framework similar to the machines? Popular self-supervised learning framework encourages the model to learn similar representations invariant to the augmentations of the images. Is it possible to learn good visual representation using the natural "image augmentations" available to our human visual system?

In this project, we reverse-engineered the key data augmentations that support the learned representation quality , namely random resized crop and blur. We hypothesized that saccade and foveation in our visual processes, is the equivalence of random crops and blur. We implement these biological plausible transformation of images and test if they could confer the same representation quality as those engineered ones.

Our experimental pipeline is based on the pytorch SimCLR implemented by sthalles and by Spijkervet. Our development supports our biologically inspired data augmentations, visualization and post hoc data analysis.

Usage

Colab Tutorials

  • Open In Colab Tutorial: Demo of Biological transformations
  • Open In Colab Tutorial: Augmentation pipeline applied to the STL10 dataset
  • Open In Colab Tutorial: Demo of Training STL10
  • Open In Colab Tutorial: Sample training and evaluation curves.

Local Testing

For running a quick demo of training, replace the $Datasets_path with the parent folder of stl10_binary (e.g. .\Datasets). You could download and extract STL10 from here. Replace $logdir with the folder to save all running logs and checkpoints, then you can use tensorboard --logdir $logdir to view the training process.

python run_magnif.py -data $Datasets_path -dataset-name stl10 --workers 16 --log_root $logdir\
	--ckpt_every_n_epocs 5 --epochs 100  --batch-size 256  --out_dim 256  \
	--run_label proj256_eval_magnif_cvr_0_05-0_35 --magnif \
	--cover_ratio 0.05 0.35  --fov_size 20  --K  20  --sampling_bdr 16 

Code has been tested on Ubuntu and Windows10 system.

Cluster Testing

For running in docker / on cluster, we used the following pytorch docker image pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9. For settings for LSF Spectrum cluster, you can refer to scripts. These jobs are submitted via bsub < $name_of_script

To support multi-worker data-preprocessing, export LSF_DOCKER_SHM_SIZE=16g need to be set beforehand. Here is the example script for setting up an interactive environment to test out the code.

export LSF_DOCKER_SHM_SIZE=16g 
bsub -Is -M 32GB -q general-interactive -R 'gpuhost' -R  'rusage[mem=32GB]'  -gpu "num=1:gmodel=TeslaV100_SXM2_32GB" -a 'docker(pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9)' /bin/bash

Multi-GPU training has not been tested.

Implementation

We implemented foveation in two ways: one approximating our perception, the other approximating the cortical representation of the image. In our perception, we can see with highest resolution at the fixation point, while the peripheral vision is blurred and less details could be recognized (Arturo; Simoncelli 2011). Moreover, when we change fixation across the image, the whole scene still feels stable without shifting. So we model this perception as a spatially varying blur of image as people classically did.

In contrast, from a neurobiological view, our visual cortex distorted the retinal input: a larger cortical area processes the input at fovea than that for periphery given the same image size. This is known as the cortical magnification. Pictorially, this is magnifying and over-representing the image around the fixation points. We model this transform with sampling the original image with a warpped grid.

These two different views of foveation (perceptual vs neurobiological) were implemented and compared as data augmentations in SimCLR.

Structure of Repo

  • Main command line interface
    • run.py Running baseline training pipeline without bio-inspired augmentations.
    • run_salcrop.py Running training pipeline with options for foveation transforms and saliency based sampling.
    • run_magnif.py Running training pipeline with options for foveation transforms and saliency based sampling.
  • data_aug\, implementation of our bio-inspired augmentations
  • posthoc\, analysis code for training result.
  • scripts\, scripts that run experiments on cluster.

Dependency

  • pytorch. Tested with version 1.7.1-1.10.0
  • kornia pip install kornia. Tested with version 0.3.1-0.6.1.
  • FastSal, we forked and modified a few lines of original to make it compatible with current pytorch 3.9 and torchvision.

Inquiries: [email protected]

Owner
Binxu
PhD student in System Neuro @PonceLab @Harvard, using generative models, CNN and optimization to understand brain Previously: Louis Tao
Binxu
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021