Recreate CenternetV2 based on MMDET.

Overview

Introduction

This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection.

This project is also for the contest OpenMMLab Algorithm Ecological Challenge.

This is NOT the official implementation.

Quick peek at the result:

The paper: centernet2(CascadeRCNN-CenterNet w. prob.) mAP is 42.9.

This implementation: we implement centernet2(CascadeRCNN-CenterNet w. prob.) mAP is 43.2.

Note: We will continue to maintain the code with trick.

Note: We always reproduce the weights, which Verification and inference part.

Implementation

Code: we add detector in mmdet/models/detectors/centernetv2.py.

Code: we add config in configs/centernetv2/centernet2.py.

Code: we add centernet_head in mmdet/dense_heads/centernet_headv2.py.

Code: we add hm_binary_focal_loss in mmdet/losses/hm_binary_focal_loss.py.

Code: we modify mmdet/roi_heads/cascade_roi_head.py, add the super parameter add_agnostic_score to Control whether the first stage score.This hyperparameter does not affect the use of other configuration files

Code: we modify mmdet/bbox_head/bbox_head.py, add the super parameter add_agnostic_score to Control Whether to use softmax.This hyperparameter does not affect the use of other configuration files

Experiments

MMDetection: this project is based on version v2.15.0.

MMCV: version v1.3.5

Dataset: coco_train_2017(117k) as training dataset and coco_val_2017(5k) as testing dataset. All the results are reported on coco_val_2017.

Results reported in the paper:

AP AP50 AP75 APs APm APl
cascadeRCNN-CenterNet w.prob 42.862 59.519 47.028 24.064 47.043 56.197

Results by this implementation:

AP AP50 AP75 APs APm APl
cascadeRCNN-CenterNet w.prob 43.2 60.6 47.9 25.3 46.6 56.2

Log and model:

backbone Iter bbox AP Config Log Model GPUs
cascadeRCNN-CenterNet w.prob R-50-FPN 90000 43.2 config log baidu [jip5] single-v100(batch=20)

Usage

You can train and inference the model like any other models in MMDetection, see docs for details.

conda create -n centernetv2 python=3.7 -y

conda install pytorch cudatoolkit=10.1 torchvision -c pytorch

pip install mmcv-full

git clone https://github.com/yyz561/mmdetection

pip install -r requirements/build.txt

pip install -v -e . # or "python setup.py develop"

Acknowledgement

Probabilistic two-stage detection

MMDetection

MMCV

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021