[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Related tags

Deep LearningSpCL
Overview

Python >=3.5 PyTorch >=1.0

Self-paced Contrastive Learning (SpCL)

The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID, which is accepted by NeurIPS-2020. SpCL achieves state-of-the-art performances on both unsupervised domain adaptation tasks and unsupervised learning tasks for object re-ID, including person re-ID and vehicle re-ID.

framework

Updates

[2020-10-13] All trained models for the camera-ready version have been updated, see Trained Models for details.

[2020-09-25] SpCL has been accepted by NeurIPS on the condition that experiments on DukeMTMC-reID dataset should be removed, since the dataset has been taken down and should no longer be used.

[2020-07-01] We did the code refactoring to support distributed training, stronger performances and more features. Please see OpenUnReID.

Requirements

Installation

git clone https://github.com/yxgeee/SpCL.git
cd SpCL
python setup.py develop

Prepare Datasets

cd examples && mkdir data

Download the person datasets Market-1501, MSMT17, PersonX, and the vehicle datasets VehicleID, VeRi-776, VehicleX. Then unzip them under the directory like

SpCL/examples/data
├── market1501
│   └── Market-1501-v15.09.15
├── msmt17
│   └── MSMT17_V1
├── personx
│   └── PersonX
├── vehicleid
│   └── VehicleID -> VehicleID_V1.0
├── vehiclex
│   └── AIC20_ReID_Simulation -> AIC20_track2/AIC20_ReID_Simulation
└── veri
    └── VeRi -> VeRi_with_plate

Prepare ImageNet Pre-trained Models for IBN-Net

When training with the backbone of IBN-ResNet, you need to download the ImageNet-pretrained model from this link and save it under the path of logs/pretrained/.

mkdir logs && cd logs
mkdir pretrained

The file tree should be

SpCL/logs
└── pretrained
    └── resnet50_ibn_a.pth.tar

ImageNet-pretrained models for ResNet-50 will be automatically downloaded in the python script.

Training

We utilize 4 GTX-1080TI GPUs for training. Note that

  • The training for SpCL is end-to-end, which means that no source-domain pre-training is required.
  • use --iters 400 (default) for Market-1501 and PersonX datasets, and --iters 800 for MSMT17, VeRi-776, VehicleID and VehicleX datasets;
  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds $SOURCE_DATASET -dt $TARGET_DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### PersonX -> Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds personx -dt market1501 --logs-dir logs/spcl_uda/personx2market_resnet50

### Market-1501 -> MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 \
  -ds market1501 -dt msmt17 --logs-dir logs/spcl_uda/market2msmt_resnet50

### VehicleID -> VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 --height 224 --width 224 \
  -ds vehicleid -dt veri --logs-dir logs/spcl_uda/vehicleid2veri_resnet50

Unsupervised Learning

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d $DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d market1501 --logs-dir logs/spcl_usl/market_resnet50

### MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 \
  -d msmt17 --logs-dir logs/spcl_usl/msmt_resnet50

### VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 --height 224 --width 224 \
  -d veri --logs-dir logs/spcl_usl/veri_resnet50

Evaluation

We utilize 1 GTX-1080TI GPU for testing. Note that

  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use --dsbn for domain adaptive models, and add --test-source if you want to test on the source domain;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To evaluate the domain adaptive model on the target-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d $DATASET --resume $PATH_OF_MODEL

To evaluate the domain adaptive model on the source-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d $DATASET --resume $PATH_OF_MODEL

Some examples:

### Market-1501 -> MSMT17 ###
# test on the target domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d msmt17 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar
# test on the source domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d market1501 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar

Unsupervised Learning

To evaluate the model, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d $DATASET --resume $PATH

Some examples:

### Market-1501 ###
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d market1501 --resume logs/spcl_usl/market_resnet50/model_best.pth.tar

Trained Models

framework

You can download the above models in the paper from [Google Drive] or [Baidu Yun](password: w3l9).

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{ge2020selfpaced,
    title={Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID},
    author={Yixiao Ge and Feng Zhu and Dapeng Chen and Rui Zhao and Hongsheng Li},
    booktitle={Advances in Neural Information Processing Systems},
    year={2020}
}
Owner
Yixiao Ge
Ph.D Candidate @ CUHK-MMLab
Yixiao Ge
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022