Sleep staging from ECG, assisted with EEG

Overview

Sleep_Staging_Knowledge Distillation

This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep staging model. Knowledge distillation is incorporated here by softmax distillation and another approach by Attention transfer based feature training. The combination of both is the proposed model.

The code implementation is done with Pytorch-lightning framework. Dependencies can be found in requirements.txt

RESEARCH

DATASET

Montreal Archive of Sleep Studies (MASS) - Complete 200 subject data used.

  • SS1 and SS3 subsets follow AASM guidelines
  • SS2, SS4, SS5 subsets follow R_K guidelines

KNOWLEDGE DISTILLATION FRAMEWORK

Knowledge distillation framework using minor modifications in U-Time as base model.

Improvement in bottleneck features from ECG_Base model to KD_model as a result of Knowledge distillation compared to EEG_base model features.

Case 1 : KD_model predicting correctly, ECG_Base predicting incorrectly

Case 2 : KD_model predicting incorrectly, ECG_Base predicting correctly

Run Training

Run train.py from 3-class or 4-class directories

To train baseline models

  python train.py --model_type <"base model type"> --model_ckpt_name <"ckpt name">

To run Knowledge Distillation

  • Feature Training
  python train.py --model_type "feat_train" --model_ckpt_name <"ckpt name"> --eeg_baseline_path <"eeg base ckpt path">
  • Feat_Temp (AT+SD+CL)
  python train.py --model_type "Feat_Temp" --model_ckpt_name <"ckpt name"> --feat_path <"path to feature trained ckpt">
  • Feat_WCE (AT+CL)
  python train.py --model_type "feat_wce" --model_ckpt_name <"ckpt name"> --feat_path <"path to feature trained ckpt">
  • KD-Temp (SD+CL)
  python train.py --model_type "kd_temp" --model_ckpt_name <"ckpt name"> --eeg_baseline_path <"eeg base ckpt path">

Run Testing

Run test.py from 3-class or 4-class directories

To test from checkpoints

  python test.py --model_type <"model type"> --test_ckpt <"Path to checkpoint>

Other arguments can be used for training and testing as per requirements

Reproducing experiments

Checkpoints to reproduce the test results can be found in this link

Directory Map

Dataset Spliting:

Splits Data in train-val-test for 4-class and 3-class cases (AASM and R_K both)

├─ Dataset_split
   ├── Data_split_3class_AllData30s_R_K.py
   ├── Data_split_3class_AllData_AASM.py
   ├── Data_split_AllData_30s_R_K.py
   └── Data_split_All_Data_AASM.py

3 Class Classification:

Run train.py with neccessary arguments for training 3-class sleep staging

├── 3_class
│   ├── datasets
│   │   ├── __init__.py
│   │   └── mass.py
│   │   
│   ├── models
│   │   ├── __init__.py
│   │   ├── ecg_base.py
│   │   ├── eeg_base.py
│   │   ├── FEAT_TEMP.py
│   │   ├── FEAT_TRAINING.py
│   │   ├── FEAT_WCE.py
│   │   └── KD_TEMP.py
│   │   
│   ├── test.py
│   ├── train.py
│   └── utils
│       ├── __init__.py
│       ├── arg_utils.py
│       ├── callback_utils.py
│       ├── dataset_utils.py
│       └── model_utils.py

4 Class Classification:

Run train.py with neccessary arguments for training 4-class sleep staging

├── 4_class
│   ├── datasets
│   │   ├── __init__.py
│   │   └── mass.py
│   │
│   ├── models
│   │   ├── __init__.py
│   │   ├── ecg_base.py
│   │   ├── eeg_base.py
│   │   ├── FEAT_TEMP.py
│   │   ├── FEAT_TRAINING.py
│   │   ├── FEAT_WCE.py
│   │   └── KD_TEMP.py
│   │   
│   ├── test.py
│   ├── train.py
│   └── utils
│       ├── __init__.py
│       ├── arg_utils.py
│       ├── callback_utils.py
│       ├── dataset_utils.py
│       └── model_utils.py

Acknowledgements

Authors

Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023