[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

Overview

AlignShift

NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository soon.

AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes (MICCAI'20, early accepted)

Key contributions

  • AlignShift aims at a plug-and-play replacement of standard 3D convolution for 3D medical images, which enables 2D-to-3D pretraining as ACS Convolutions. It converts theoretically any 2D pretrained network into thickness-aware 3D network.
  • AlignShift bridges the performance gap between thin- and thick-slice volumes by a unified framework. Remarkably, the AlignShift-converted networks behave like 3D for the thin-slice, nevertheless degenerate to 2D for the thick-slice adaptively.
  • Without whistles and bells, we outperform previous state of the art by considerable margins on large-scale DeepLesion benchmark for universal lesion detection.

Code structure

  • alignshift the core implementation of AlignShift convolution and TSM convolution, including the operators, models, and 2D-to-3D/AlignShift/TSM model converters.
    • operators: include AlignShiftConv, TSMConv.
    • converters.py: include converters which convert 2D models to 3dConv/AlignShiftConv/TSMConv counterparts.
    • models: Native AlignShift/TSM models.
  • deeplesion the experiment code is base on mmdetection ,this directory consists of compounents used in mmdetection.
  • mmdet

Installation

  • git clone this repository
  • pip install -e .

Convert a 2D model into 3D with a single line of code

from converter import Converter
import torchvision
from alignshift import AlignShiftConv
# m is a standard pytorch model
m = torchvision.models.resnet18(True)
alignshift_conv_cfg = dict(conv_type=AlignShiftConv, 
                          n_fold=8, 
                          alignshift=True, 
                          inplace=True,
                          ref_spacing=0.2, 
                          shift_padding_zero=True)
m = Converter(m, 
              alignshift_conv_cfg, 
              additional_forward_fts=['thickness'], 
              skip_first_conv=True, 
              first_conv_input_channles=1)
# after converted, m is using AlignShiftConv and capable of processing 3D volumes
x = torch.rand(batch_size, in_channels, D, H, W)
thickness = torch.rand(batch_size, 1)
out = m(x, thickness)

Usage of AlignShiftConv/TSMConv operators

from alignshift.operators import AlignShiftConv, TSMConv
x = torch.rand(batch_size, 3, D, H, W)
thickness = torch.rand(batch_size, 1)
# AlignShiftConv to process 3D volumnes
conv = AlignShiftConv(in_channels=3, out_channels=10, kernel_size=3, padding=1, n_fold=8, alignshift=True, ref_thickness=2.0)
out = conv(x, thickness)
# TSMConv to process 3D volumnes
conv = TSMConv(in_channels=3, out_channels=10, kernel_size=3, padding=1, n_fold=8, tsm=True)
out = conv(x)

Usage of native AlignShiftConv/TSMConv models

from alignshift.models import DenseNetCustomTrunc3dAlign, DenseNetCustomTrunc3dTSM
net = DenseNetCustomTrunc3dAlign(num_classes=3)
B, C_in, D, H, W = (1, 3, 7, 256, 256)
input_3d = torch.rand(B, C_in, D, H, W)
thickness = torch.rand(batch_size, 1)
output_3d = net(input_3d, thickness)

How to run the experiments

Owner
Medical 3D Vision
Medical 3D Vision
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023