A python tutorial on bayesian modeling techniques (PyMC3)

Overview

Bayesian Modelling in Python

Bayesian Modelling in Python

Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling techniques in python (PYMC3). This tutorial doesn't aim to be a bayesian statistics tutorial - but rather a programming cookbook for those who understand the fundamental of bayesian statistics and want to learn how to build bayesian models using python. The tutorial sections and topics can be seen below.

Contents

  • Introduction

    • Motivation for learning bayesian statistics
    • Loading and parsing Hangout chat data
  • Section 1: Estimating model parameters

    • Frequentist technique for estimating parameters of a poisson model (Optimization routine)
    • Bayesian technique for estimating parameters of a poisson model (MCMC)
  • Section 2: Model checking & comparison

    • Posterior predictive check
    • Bayes factor
  • Section 3: Hierarchal modeling

    • Model pooling (separate models)
    • Partial pooling (hierarchal models)
    • Shrinkage effect of partial pooling
  • Section 4: Bayesian regression

    • Bayesian fixed effects poisson regression
    • Bayesian mixed effects poisson regression
  • Section 5: Bayesian survival analysis

    • Survival model theory
    • Cox proportional hazard model
    • Aalen's additive hazard model
  • Section 6: Bayesian A/B tests

    • Bayesian test of proportions
    • Bayesian t-test (BEST)

Contributions

  • All contributions are more than welcome. They can be minor (spelling, better explanations, improved code/charts) or major (contribute a full section).
  • If you would like to contribute, please create a pull request in GitHub. Happy to discuss ideas before you begin working on the addition.
  • I would especially welcome any contributions that address: survival analysis, mixture models, time series models or A/B experiments.
  • If you're not familiar with GitHub - please email me at [email protected].

Motivation for learning bayesian statistics

Statistics is a topic that never resonated with me throughout university. The frequentist techniques that we were taught (p-values etc) felt contrived and ultimately I turned my back on statistics as a topic that I wasn't interested in.

That was until I stumbled upon Bayesian statistics - a branch to statistics quite different from the traditional frequentist statistics that most universities teach. I was inspired by a number of different publications, blogs & videos that I would highly recommend any newbies to bayesian stats to begin with. They include:

I created this tutorial in the hope that others find it useful and it helps them learn Bayesian techniques just like the above resources helped me. I hope you find it useful and I'd welcome any corrections/comments/contributions from the community.

Note

This tutorial is actively being worked on. I'm keen to get feedback and welcome ideas/contributions.

Owner
Mark Regan
PM @Google Assistant
Mark Regan
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023