MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

Overview

MixText

This repo contains codes for the following paper:

Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification. In Proceedings of the 58th Annual Meeting of the Association of Computational Linguistics (ACL'2020)

If you would like to refer to it, please cite the paper mentioned above.

Getting Started

These instructions will get you running the codes of MixText.

Requirements

  • Python 3.6 or higher
  • Pytorch >= 1.3.0
  • Pytorch_transformers (also known as transformers)
  • Pandas, Numpy, Pickle
  • Fairseq

Code Structure

|__ data/
        |__ yahoo_answers_csv/ --> Datasets for Yahoo Answers
            |__ back_translate.ipynb --> Jupyter Notebook for back translating the dataset
            |__ classes.txt --> Classes for Yahoo Answers dataset
            |__ train.csv --> Original training dataset
            |__ test.csv --> Original testing dataset
            |__ de_1.pkl --> Back translated training dataset with German as middle language
            |__ ru_1.pkl --> Back translated training dataset with Russian as middle language

|__code/
        |__ transformers/ --> Codes copied from huggingface/transformers
        |__ read_data.py --> Codes for reading the dataset; forming labeled training set, unlabeled training set, development set and testing set; building dataloaders
        |__ normal_bert.py --> Codes for BERT baseline model
        |__ normal_train.py --> Codes for training BERT baseline model
        |__ mixtext.py --> Codes for our proposed TMix/MixText model
        |__ train.py --> Codes for training/testing TMix/MixText 

Downloading the data

Please download the dataset and put them in the data folder. You can find Yahoo Answers, AG News, DB Pedia here, IMDB here.

Pre-processing the data

For Yahoo Answer, We concatenate the question title, question content and best answer together to form the text to be classified. The pre-processed Yahoo Answer dataset can be downloaded here.

Note that for AG News and DB Pedia, we only utilize the content (without titles) to do the classifications, and for IMDB we do not perform any pre-processing.

We utilize Fairseq to perform back translation on the training dataset. Please refer to ./data/yahoo_answers_csv/back_translate.ipynb for details.

Here, we have put two examples of back translated data, de_1.pkl and ru_1.pkl, in ./data/yahoo_answers_csv/ as well. You can directly use them for Yahoo Answers or generate your own back translated data followed the ./data/yahoo_answers_csv/back_translate.ipynb.

Training models

These section contains instructions for training models on Yahoo Answers using 10 labeled data per class for training.

Training BERT baseline model

Please run ./code/normal_train.py to train the BERT baseline model (only use labeled training data):

python ./code/normal_train.py --gpu 0,1 --n-labeled 10 --data-path ./data/yahoo_answers_csv/ \
--batch-size 8 --epochs 20 

Training TMix model

Please run ./code/train.py to train the TMix model (only use labeled training data):

python ./code/train.py --gpu 0,1 --n-labeled 10 --data-path ./data/yahoo_answers_csv/ \
--batch-size 8 --batch-size-u 1 --epochs 50 --val-iteration 20 \
--lambda-u 0 --T 0.5 --alpha 16 --mix-layers-set 7 9 12 --separate-mix True 

Training MixText model

Please run ./code/train.py to train the MixText model (use both labeled and unlabeled training data):

python ./code/train.py --gpu 0,1,2,3 --n-labeled 10 \
--data-path ./data/yahoo_answers_csv/ --batch-size 4 --batch-size-u 8 --epochs 20 --val-iteration 1000 \
--lambda-u 1 --T 0.5 --alpha 16 --mix-layers-set 7 9 12 \
--lrmain 0.000005 --lrlast 0.0005
Owner
GT-SALT
Social and Language Technologies Lab
GT-SALT
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022