An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Overview

Channel LM Prompting (and beyond)

This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Channel Language Model Prompting for Few-Shot Text Classification" 2021.

For any questions about the paper or the code, or to request pretrained checkpoints, please contact the first author (email) or leave issues.

If you find our code or paper useful, please cite the paper:

@article{ min2021noisy ,
  title={ Noisy Channel Language Model Prompting for Few-Shot Text Classification },
  author={ Min, Sewon and Lewis, Mike and Hajishirzi, Hannaneh and Zettlemoyer, Luke },
  journal={ arXiv preprint },
  year={ 2021 }
}

This also includes implementations of many recent papers studying prompt-based learning. Please make sure to cite corresponding papers when you use implementations of the methods in this repo.

Content

  1. Installation
  2. Download & Preprocess Data
  3. Demonstration-based methods
  4. Tuning methods

You can run the channel model and the direct model for each of these methods. Please see Section 3 of the paper for more details about these formulations.

Installation

$ conda create -n lm-prompt python=3.8
$ conda activate lm-prompt
$ conda install pytorch=1.7.1 -c pytorch
$ pip install transformers==4.3.0

Download and Preprocess Data

We use (and modify) the data and the preprocessing script from Gao et al. ACL 2021 (paper, code) and Zhang et al. NeurIPS 2015 (paper, data).

To download the k-shot data (already preprocessed): Download the data (776MB) from this link. Pleae place data.zip under the same directory as the code and unzip it.

To download the original data and preprocess yourself:

pip install pandas==1.1.5 # for preprocessing script
mkdir data
cd data
wget https://nlp.cs.princeton.edu/projects/lm-bff/datasets.tar
tar xvf datasets.tar
cd ..

Also, download the data from here and place it in data/original.

Then, run python3 generative_k_shot_data.py, and you are done!

Optionally, you can specify arguments such as

  • --k: number of training examples (default is 16).
  • --balance: whether or not to guarantee the balance between labels in the training data; more precisely, whether k is the number of training examples in total or per label (default is False).
  • --data_dir: directory for the original data (default is data/original).
  • --output_dir: directory for the preprocessed data (default is data).

To check the data: You can see the list of eleven datasets used in the paper by ls data/k-shot. Each dataset consists of five different splits based on five different splits (test sets are the same).

Demonstration-based methods

This section is for methods which does not update any of the model parameters. For details about methods, please see Section 4.1 of the paper.

Zero-shot

python main.py \
    --task {task_name} \
    --split {dev|test} \
    --data_dir data \
    --out_dir out \
    --gpt2 gpt2-large \
    --do_zeroshot \
    --method {direct|channel}

This command will run zero-shot inference using GPT2-large using four different templates (verbalizers) as reported in the paper.

  • For "channel", please specify --method channel.
  • For "direct", please specify --method direct.
  • For "direct++", please run the command line without --split first (this will run inference using the N/A input, following Zhao et al. ICML 2021), and then run the command line with --method direct --use_calibration.

Useful notes:

  • Note that, once you run inference, it will save a cache in the out directory, and will re-load the cache file when you run the exact same command line.
  • You can adjust --batch_size if you run into OOM issue (default is 32).
  • Please note that GPU parallization is not implemented for inference.
  • To save a log file, please specify --log_file.
  • To use GPT2 with different sizes, please use --gpt2 {gpt2|gpt2-medium|gpt2-xl}.

Concat-based demonstration

python main.py \
    --task {task_name} \
    --split {dev|test} \
    --data_dir data \
    --out_dir out \
    --gpt2 gpt2-large \
    --do_zeroshot \
    --method {direct|channel} \
    --use_demonstrations \
    --k 16 \
    --seed {13|21|42|87|100}
  • You can modify k and seed to try different numbers of training examples and different seeds for the k-shot data.

Ensemble-based demonstration

Add --ensemble to the command line for the Concat-based demonstration method.

Tuning methods

This section is for methods that fully finetune the model parameters (standard finetuning), or update a very limited number of parameters (prompt tuning, head tuning and transformation tuning). For details about the methods, please see Section 4.2 of the paper.

Prompt tuning

python main.py \
    --task {task_name} \
    --split {dev|test} \
    --data_dir data \
    --out_dir out \
    --gpt2 gpt2-large \
    --method {direct|channel} \
    --prompt_tune \
    --do_train \
    --batch_size 32 \
    --lr {0.1|0.01|0.001}
  • Please see Appendix B of the paper to see which learning rate we used for each dataset.
  • Once you train the model, you can specify --do_check to load the existing checkpoint without retraining the model.
  • Please note that GPU parallization is implemented for training, but is not implemented for inference.
  • Note that, by default, we use the checkpoint that is trained for 100 steps.
  • To explore different numbers of prompts, please specify --n_prefix. The default value is 20, following the original prompt tuning paper (Lester et al. 2021).
  • If you want to explore zero-shot task transfer (Section 6.4 in the paper), you can (1) first train the model on the training data, and (2) run inference by specifying --task {task_name_for_test} --train_task {task_name_for_train} --do_check.

Head tuning

Use --head_tune instead of --prompt_tune to the command line for the Prompt tuning method. Note that head tuning is only for the direct baseline.

Transformation tuning

Use --transform_tune instead of --prompt_tune to the command line for the Prompt tuning method. Note that transformation tuning is only for the direct baseline.

Standard finetuning

To finetune the entire model parameters, as in typical finetuning, please do not specify any of --prompt_tune, --head_tune or --transform_tune.

Results

For all results, please check out Table 3 and Table 4 of the paper.

Owner
Sewon Min
PhD student @uwnlp
Sewon Min
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
571 Dec 25, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022