Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Overview

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Introduction

In this work, we propose a new method for unseen object instance segmentation by learning RGB-D feature embeddings from synthetic data. A metric learning loss functionis utilized to learn to produce pixel-wise feature embeddings such that pixels from the same object are close to each other and pixels from different objects are separated in the embedding space. With the learned feature embeddings, a mean shift clustering algorithm can be applied to discover and segment unseen objects. We further improve the segmentation accuracy with a new two-stage clustering algorithm. Our method demonstrates that non-photorealistic synthetic RGB and depth images can be used to learn feature embeddings that transfer well to real-world images for unseen object instance segmentation. arXiv, Talk video

License

Unseen Object Clustering is released under the NVIDIA Source Code License (refer to the LICENSE file for details).

Citation

If you find Unseen Object Clustering useful in your research, please consider citing:

@inproceedings{xiang2020learning,
    Author = {Yu Xiang and Christopher Xie and Arsalan Mousavian and Dieter Fox},
    Title = {Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation},
    booktitle = {Conference on Robot Learning (CoRL)},
    Year = {2020}
}

Required environment

  • Ubuntu 16.04 or above
  • PyTorch 0.4.1 or above
  • CUDA 9.1 or above

Installation

  1. Install PyTorch.

  2. Install python packages

    pip install -r requirement.txt

Download

  • Download our trained checkpoints from here, save to $ROOT/data.

Running the demo

  1. Download our trained checkpoints first.

  2. Run the following script for testing on images under $ROOT/data/demo.

    ./experiments/scripts/demo_rgbd_add.sh

Training and testing on the Tabletop Object Dataset (TOD)

  1. Download the Tabletop Object Dataset (TOD) from here (34G).

  2. Create a symlink for the TOD dataset

    cd $ROOT/data
    ln -s $TOD_DATA tabletop
  3. Training and testing on the TOD dataset

    cd $ROOT
    
    # multi-gpu training, we used 4 GPUs
    ./experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_train_tabletop.sh
    
    # testing, $GPU_ID can be 0, 1, etc.
    ./experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_test_tabletop.sh $GPU_ID $EPOCH
    

Testing on the OCID dataset and the OSD dataset

  1. Download the OCID dataset from here, and create a symbol link:

    cd $ROOT/data
    ln -s $OCID_dataset OCID
  2. Download the OSD dataset from here, and create a symbol link:

    cd $ROOT/data
    ln -s $OSD_dataset OSD
  3. Check scripts in experiments/scripts with name test_ocid or test_ocd. Make sure the path of the trained checkpoints exist.

    experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_test_ocid.sh
    experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_test_osd.sh
    

Running with ROS on a Realsense camera for real-world unseen object instance segmentation

  • Python2 is needed for ROS.

  • Make sure our pretrained checkpoints are downloaded.

    # start realsense
    roslaunch realsense2_camera rs_aligned_depth.launch tf_prefix:=measured/camera
    
    # start rviz
    rosrun rviz rviz -d ./ros/segmentation.rviz
    
    # run segmentation, $GPU_ID can be 0, 1, etc.
    ./experiments/scripts/ros_seg_rgbd_add_test_segmentation_realsense.sh $GPU_ID

Our example:

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022