An SE(3)-invariant autoencoder for generating the periodic structure of materials

Related tags

Deep Learningcdvae
Overview

Crystal Diffusion Variational AutoEncoder

This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic structure of materials.

It has several main functionalities:

  • Generate novel, stable materials by learning from a dataset containing existing material structures.
  • Generate materials by optimizing a specific property in the latent space, i.e. inverse design.

[Paper] [Datasets]

Table of Contents

Installation

The easiest way to install prerequisites is via conda.

Pre-install step

Install conda-merge:

pip install conda-merge

Check that you can invoke conda-merge by running conda-merge -h.

GPU machines

Run the following command to install the environment:

conda-merge env.common.yml env.gpu.yml > env.yml
conda env create -f env.yml

Activate the conda environment with conda activate cdvae.

Install this package with pip install -e ..

CPU-only machines

conda-merge env.common.yml env.cpu.yml > env.yml
conda env create -f env.yml
conda activate cdvae
pip install -e .

Setting up environment variables

Make a copy of the .env.template file and rename it to .env. Modify the following environment variables in .env.

  • PROJECT_ROOT: path to the folder that contains this repo
  • HYDRA_JOBS: path to a folder to store hydra outputs
  • WABDB: path to a folder to store wabdb outputs

Datasets

All datasets are directly available on data/ with train/valication/test splits. You don't need to download them again. If you use these datasets, please consider to cite the original papers from which we curate these datasets.

Find more about these datasets by going to our Datasets page.

Training CDVAE

Training without a property predictor

To train a CDVAE, run the following command:

python cdvae/run.py data=perov expname=perov

To use other datasets, use data=carbon and data=mp_20 instead. CDVAE uses hydra to configure hyperparameters, and users can modify them with the command line or configure files in conf/ folder.

After training, model checkpoints can be found in $HYDRA_JOBS/singlerun/YYYY-MM-DD/expname.

Training with a property predictor

Users can also additionally train an MLP property predictor on the latent space, which is needed for the property optimization task:

python cdvae/run.py data=perov expname=perov model.predict_property=True

The name of the predicted propery is defined in data.prop, as in conf/data/perov.yaml for Perov-5.

Generating materials

To generate materials, run the following command:

python scripts/evaluate.py --model_path MODEL_PATH --tasks recon gen opt

MODEL_PATH will be the path to the trained model. Users can choose one or several of the 3 tasks:

  • recon: reconstruction, reconstructs all materials in the test data. Outputs can be found in eval_recon.ptl
  • gen: generate new material structures by sampling from the latent space. Outputs can be found in eval_gen.pt.
  • opt: generate new material strucutre by minimizing the trained property in the latent space (requires model.predict_property=True). Outputs can be found in eval_opt.pt.

eval_recon.pt, eval_gen.pt, eval_opt.pt are pytorch pickles files containing multiple tensors that describes the structures of M materials batched together. Each material can have different number of atoms, and we assume there are in total N atoms. num_evals denote the number of Langevin dynamics we perform for each material.

  • frac_coords: fractional coordinates of each atom, shape (num_evals, N, 3)
  • atom_types: atomic number of each atom, shape (num_evals, N)
  • lengths: the lengths of the lattice, shape (num_evals, M, 3)
  • angles: the angles of the lattice, shape (num_evals, M, 3)
  • num_atoms: the number of atoms in each material, shape (num_evals, M)

Evaluating model

To compute evaluation metrics, run the following command:

python scripts/compute_metrics.py --root_path MODEL_PATH --tasks recon gen opt

MODEL_PATH will be the path to the trained model. All evaluation metrics will be saved in eval_metrics.json.

Authors and acknowledgements

The software is primary written by Tian Xie, with signficant contributions from Xiang Fu.

The GNN codebase and many utility functions are adapted from the ocp-models by the Open Catalyst Project. Especially, the GNN implementations of DimeNet++ and GemNet are used.

The main structure of the codebase is built from NN Template.

For the datasets, Perov-5 is curated from Perovksite water-splitting, Carbon-24 is curated from AIRSS data for carbon at 10GPa, MP-20 is curated from Materials Project.

Citation

Please consider citing the following paper if you find our code & data useful.

@article{xie2021crystal,
  title={Crystal Diffusion Variational Autoencoder for Periodic Material Generation},
  author={Xie, Tian and Fu, Xiang and Ganea, Octavian-Eugen and Barzilay, Regina and Jaakkola, Tommi},
  journal={arXiv preprint arXiv:2110.06197},
  year={2021}
}

Contact

Please leave an issue or reach out to Tian Xie (txie AT csail DOT mit DOT edu) if you have any questions.

Owner
Tian Xie
Postdoc at MIT CSAIL. Machine learning algorithms for materials, drugs, and beyond.
Tian Xie
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021