Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Related tags

Deep Learningpcme
Overview

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Official Pytorch implementation of PCME | Paper

Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de Rezende2 Yannis Kalantidis2 Diane Larlus2

1NAVER AI LAB
2NAVER LABS Europe

VIDEO

Updates

  • 23 Jun, 2021: Initial upload.

Installation

Install dependencies using the following command.

pip install cython && pip install -r requirements.txt
python -c 'import nltk; nltk.download("punkt", download_dir="/opt/conda/nltk_data")'
git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Dockerfile

You can use my docker image as well

docker pull sanghyukchun/pcme:torch1.2-apex-dali

Please Add --model__cache_dir /vector_cache when you run the code

Configuration

All experiments are based on configuration files (see config/coco and config/cub). If you want to change only a few options, instead of re-writing a new configuration file, you can override the configuration as the follows:

python .py --dataloader__batch_size 32 --dataloader__eval_batch_size 8 --model__eval_method matching_prob

See config/parser.py for details

Dataset preparation

COCO Caption

We followed the same split provided by VSE++. Dataset splits can be found in datasets/annotations.

Note that we also need instances_2014.json for computing PMRP score.

CUB Caption

Download images from this link, and download caption from reedscot/cvpr2016. You can use the image path and the caption path separately in the code.

Evaluate pretrained models

NOTE: the current implementation of plausible match R-Precision (PMRP) is not efficient:
It first dumps all ranked items for each item to a local file, and compute R-precision.
We are planning to re-implement efficient PMRP as soon as possible.

COCO Caption

# Compute recall metrics
python evaluate_recall_coco.py ./config/coco/pcme_coco.yaml \
    --dataset_root  \
    --model_path model_last.pth \
    # --model__cache_dir /vector_cache # if you use my docker image
# Compute plausible match R-Precision (PMRP) metric
python extract_rankings_coco.py ./config/coco/pcme_coco.yaml \
    --dataset_root  \
    --model_path model_last.pth \
    --dump_to  \
    # --model__cache_dir /vector_cache # if you use my docker image

python evaluate_pmrp_coco.py --ranking_file 
Method I2T PMRP I2T [email protected] T2I PMRP T2I [email protected] Model file
PCME 45.0 68.8 46.0 54.6 link
PVSE K=1 40.3 66.7 41.8 53.5 -
PVSE K=2 42.8 69.2 43.6 55.2 -
VSRN 41.2 76.2 42.4 62.8 -
VSRN + AOQ 44.7 77.5 45.6 63.5 -

CUB Caption

python evaluate_cub.py ./config/cub/pcme_cub.yaml \
    --dataset_root  \
    --caption_root  \
    --model_path model_last.pth \
    # --model__cache_dir /vector_cache # if you use my docker image

NOTE: If you just download file from reedscot/cvpr2016, then caption_root will be cvpr2016_cub/text_c10

If you want to test other probabilistic distances, such as Wasserstein distance or KL-divergence, try the following command:

python evaluate_cub.py ./config/cub/pcme_cub.yaml \
    --dataset_root  \
    --caption_root  \
    --model_path model_last.pth \
    --model__eval_method  \
    # --model__cache_dir /vector_cache # if you use my docker image

You can choose distance_method in ['elk', 'l2', 'min', 'max', 'wasserstein', 'kl', 'reverse_kl', 'js', 'bhattacharyya', 'matmul', 'matching_prob']

How to train

NOTE: we train each model with mixed-precision training (O2) on a single V100.
Since, the current code does not support multi-gpu training, if you use different hardware, the batchsize should be reduced.
Please note that, hence, the results couldn't be reproduced if you use smaller hardware than V100.

COCO Caption

python train_coco.py ./config/coco/pcme_coco.yaml --dataset_root  \
    # --model__cache_dir /vector_cache # if you use my docker image

It takes about 46 hours in a single V100 with mixed precision training.

CUB Caption

We use CUB Caption dataset (Reed, et al. 2016) as a new cross-modal retrieval benchmark. Here, instead of matching the sparse paired image-caption pairs, we treat all image-caption pairs in the same class as positive. Since our split is based on the zero-shot learning benchmark (Xian, et al. 2017), we leave out 50 classes from 200 bird classes for the evaluation.

  • Reed, Scott, et al. "Learning deep representations of fine-grained visual descriptions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
  • Xian, Yongqin, Bernt Schiele, and Zeynep Akata. "Zero-shot learning-the good, the bad and the ugly." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

hyperparameter search

We additionally use cross-validation splits by (Xian, et el. 2017), namely using 100 classes for training and 50 classes for validation.

python train_cub.py ./config/cub/pcme_cub.yaml \
    --dataset_root  \
    --caption_root  \
    --dataset_name cub_trainval1 \
    # --model__cache_dir /vector_cache # if you use my docker image

Similarly, you can use cub_trainval2 and cub_trainval3 as well.

training with full training classes

python train_cub.py ./config/cub/pcme_cub.yaml \
    --dataset_root  \
    --caption_root  \
    # --model__cache_dir /vector_cache # if you use my docker image

It takes about 4 hours in a single V100 with mixed precision training.

How to cite

@inproceedings{chun2021pcme,
    title={Probabilistic Embeddings for Cross-Modal Retrieval},
    author={Chun, Sanghyuk and Oh, Seong Joon and De Rezende, Rafael Sampaio and Kalantidis, Yannis and Larlus, Diane},
    year={2021},
    booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},
}

License

MIT License

Copyright (c) 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023