Denoising Normalizing Flow

Overview

Denoising Normalizing Flow

Christian Horvat and Jean-Pascal Pfister 2021

License: MIT

We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introducing the Denoising Normalizing Flow (DNF), a generative model able to

  1. approximate the data generating density p(x),
  2. generate new samples from p(x),
  3. infer low-dimensional latent variables.

As a classical NF degenerates for data living on a low-dimensional manifold embedded in high dimensions, the DNF inflates the manifold valued data using noise and learns a denoising mapping similar to DAE.

Related Work

The DNF is highly related to the Manifold Flow introduced by Johann Brehmer and Kyle Cramner. Also, our code is a cabon copy of their implementation with the following additions:

  1. The data can be inflated with Gaussian noise.
  2. We include the DNF as new mode for the ℳ-flow.
  3. New datasets, a thin spiral, a von Mises on a circle, and a mixture of von Mises on a sphere were added.
  4. A new folder, experiments/plots, for generating the images from the paper was added.
  5. A new folder, experiments/benchmarks, for benchmarking the DNF was added.
  6. The evaluate.py was modified and now includes the grid evaluation for the thin spiral and gan2d image manifold, the latent interpolations, the density estimation for the PAE, the latent density estimation on the thin spiral, and the KS statistics for the circle and sphere experiments.

The theoretical foundation of the DNF was developed in Density estimation on low-dimensional manifolds: an inflation-deflation approach.

Data sets

We trained the DNF and ℳ-flow on the following datasets:

Data set Data dimension Manifold dimension Arguments to train.py, and evaluate.py
Thin spiral 2 1 --dataset thin_spiral
2-D StyleGAN image manifold 64 x 64 x 3 2 --dataset gan2d
64-D StyleGAN image manifold 64 x 64 x 3 64 --dataset gan64d
CelebA-HQ 64 x 64 x 3 ? --dataset celeba

To use the model for your own data, you need to create a simulator (see experiments/datasets), and add it to experiments/datasets/init.py. If you have problems with that, please don't hesitate to contact us.

Benchmarks

We benchmark the DNF with the ℳ-flow, Probabilistic Auto Encoder (PAE), and InfoMax Variational Autoencoder. For that, we rely on the original implementations of those models, and modify them where appropriate, see experiments/benchmarks/vae and experiments/benchmarks/pae for more details.

Training & Evaluation

The configurations for the models and hyperparameter settings used in the paper can be found in experiments/configs.

Acknowledgements

We thank Johann Brehmer and Kyle Cramner for publishing their implementation of the Manifold Flow. For the experiments with the Probabilistic Auto-Encoder (V. Böhm and U. Seljak) and InfoMax Variational Autoencoder (A.L. Rezaabad, S. Vishwanath), we used the official implementations of these models. We thank these authors for this possibility.

Owner
CHrvt
CHrvt
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022