AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Overview

AdelaiDet

AdelaiDet is an open source toolbox for multiple instance-level recognition tasks on top of Detectron2. All instance-level recognition works from our group are open-sourced here.

To date, AdelaiDet implements the following algorithms:

Models

COCO Object Detecton Baselines with FCOS

Name inf. time box AP download
FCOS_R_50_1x 16 FPS 38.7 model
FCOS_MS_R_101_2x 12 FPS 43.1 model
FCOS_MS_X_101_32x8d_2x 6.6 FPS 43.9 model
FCOS_MS_X_101_32x8d_dcnv2_2x 4.6 FPS 46.6 model
FCOS_RT_MS_DLA_34_4x_shtw 52 FPS 39.1 model

More models can be found in FCOS README.md.

COCO Instance Segmentation Baselines with BlendMask

Model Name inf. time box AP mask AP download
Mask R-CNN R_101_3x 10 FPS 42.9 38.6
BlendMask R_101_3x 11 FPS 44.8 39.5 model
BlendMask R_101_dcni3_5x 10 FPS 46.8 41.1 model

For more models and information, please refer to BlendMask README.md.

COCO Instance Segmentation Baselines with MEInst

Name inf. time box AP mask AP download
MEInst_R_50_3x 12 FPS 43.6 34.5 model

For more models and information, please refer to MEInst README.md.

Total_Text results with ABCNet

Name inf. time e2e-hmean det-hmean download
v1-totaltext 11 FPS 67.1 86.0 model
v2-totaltext 7.7 FPS 71.8 87.2 model

For more models and information, please refer to ABCNet README.md.

COCO Instance Segmentation Baselines with CondInst

Name inf. time box AP mask AP download
CondInst_MS_R_50_1x 14 FPS 39.7 35.7 model
CondInst_MS_R_50_BiFPN_3x_sem 13 FPS 44.7 39.4 model
CondInst_MS_R_101_3x 11 FPS 43.3 38.6 model
CondInst_MS_R_101_BiFPN_3x_sem 10 FPS 45.7 40.2 model

For more models and information, please refer to CondInst README.md.

Note that:

  • Inference time for all projects is measured on a NVIDIA 1080Ti with batch size 1.
  • APs are evaluated on COCO2017 val split unless specified.

Installation

First install Detectron2 following the official guide: INSTALL.md.

Please use Detectron2 with commit id 9eb4831 if you have any issues related to Detectron2.

Then build AdelaiDet with:

git clone https://github.com/aim-uofa/AdelaiDet.git
cd AdelaiDet
python setup.py build develop

If you are using docker, a pre-built image can be pulled with:

docker pull tianzhi0549/adet:latest

Some projects may require special setup, please follow their own README.md in configs.

Quick Start

Inference with Pre-trained Models

  1. Pick a model and its config file, for example, fcos_R_50_1x.yaml.
  2. Download the model wget https://cloudstor.aarnet.edu.au/plus/s/glqFc13cCoEyHYy/download -O fcos_R_50_1x.pth
  3. Run the demo with
python demo/demo.py \
    --config-file configs/FCOS-Detection/R_50_1x.yaml \
    --input input1.jpg input2.jpg \
    --opts MODEL.WEIGHTS fcos_R_50_1x.pth

Train Your Own Models

To train a model with "train_net.py", first setup the corresponding datasets following datasets/README.md, then run:

OMP_NUM_THREADS=1 python tools/train_net.py \
    --config-file configs/FCOS-Detection/R_50_1x.yaml \
    --num-gpus 8 \
    OUTPUT_DIR training_dir/fcos_R_50_1x

To evaluate the model after training, run:

OMP_NUM_THREADS=1 python tools/train_net.py \
    --config-file configs/FCOS-Detection/R_50_1x.yaml \
    --eval-only \
    --num-gpus 8 \
    OUTPUT_DIR training_dir/fcos_R_50_1x \
    MODEL.WEIGHTS training_dir/fcos_R_50_1x/model_final.pth

Note that:

  • The configs are made for 8-GPU training. To train on another number of GPUs, change the --num-gpus.
  • If you want to measure the inference time, please change --num-gpus to 1.
  • We set OMP_NUM_THREADS=1 by default, which achieves the best speed on our machines, please change it as needed.
  • This quick start is made for FCOS. If you are using other projects, please check the projects' own README.md in configs.

Acknowledgements

The authors are grateful to Nvidia, Huawei Noah's Ark Lab, ByteDance, Adobe who generously donated GPU computing in the past a few years.

Citing AdelaiDet

If you use this toolbox in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@misc{tian2019adelaidet,
  author =       {Tian, Zhi and Chen, Hao and Wang, Xinlong and Liu, Yuliang and Shen, Chunhua},
  title =        {{AdelaiDet}: A Toolbox for Instance-level Recognition Tasks},
  howpublished = {\url{https://git.io/adelaidet}},
  year =         {2019}
}

and relevant publications:

@inproceedings{tian2019fcos,
  title     =  {{FCOS}: Fully Convolutional One-Stage Object Detection},
  author    =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {Proc. Int. Conf. Computer Vision (ICCV)},
  year      =  {2019}
}

@article{tian2021fcos,
  title   =  {{FCOS}: A Simple and Strong Anchor-free Object Detector},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  journal =  {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
  year    =  {2021}
}

@inproceedings{chen2020blendmask,
  title     =  {{BlendMask}: Top-Down Meets Bottom-Up for Instance Segmentation},
  author    =  {Chen, Hao and Sun, Kunyang and Tian, Zhi and Shen, Chunhua and Huang, Yongming and Yan, Youliang},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2020}
}

@inproceedings{zhang2020MEInst,
  title     =  {Mask Encoding for Single Shot Instance Segmentation},
  author    =  {Zhang, Rufeng and Tian, Zhi and Shen, Chunhua and You, Mingyu and Yan, Youliang},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2020}
}

@inproceedings{liu2020abcnet,
  title     =  {{ABCNet}: Real-time Scene Text Spotting with Adaptive {B}ezier-Curve Network},
  author    =  {Liu, Yuliang and Chen, Hao and Shen, Chunhua and He, Tong and Jin, Lianwen and Wang, Liangwei},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2020}
}

@ARTICLE{9525302,
  author={Liu, Yuliang and Shen, Chunhua and Jin, Lianwen and He, Tong and Chen, Peng and Liu, Chongyu and Chen, Hao},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={ABCNet v2: Adaptive Bezier-Curve Network for Real-time End-to-end Text Spotting}, 
  year={2021},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3107437}
}
  

@inproceedings{wang2020solo,
  title     =  {{SOLO}: Segmenting Objects by Locations},
  author    =  {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@inproceedings{wang2020solov2,
  title     =  {{SOLOv2}: Dynamic and Fast Instance Segmentation},
  author    =  {Wang, Xinlong and Zhang, Rufeng and Kong, Tao and Li, Lei and Shen, Chunhua},
  booktitle =  {Proc. Advances in Neural Information Processing Systems (NeurIPS)},
  year      =  {2020}
}

@article{wang2021solo,
  title   =  {{SOLO}: A Simple Framework for Instance Segmentation},
  author  =  {Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
  journal =  {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
  year    =  {2021}
}

@article{tian2019directpose,
  title   =  {{DirectPose}: Direct End-to-End Multi-Person Pose Estimation},
  author  =  {Tian, Zhi and Chen, Hao and Shen, Chunhua},
  journal =  {arXiv preprint arXiv:1911.07451},
  year    =  {2019}
}

@inproceedings{tian2020conditional,
  title     =  {Conditional Convolutions for Instance Segmentation},
  author    =  {Tian, Zhi and Shen, Chunhua and Chen, Hao},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@inproceedings{tian2021boxinst,
  title     =  {{BoxInst}: High-Performance Instance Segmentation with Box Annotations},
  author    =  {Tian, Zhi and Shen, Chunhua and Wang, Xinlong and Chen, Hao},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2021}
}

@inproceedings{wang2021densecl,
  title     =   {Dense Contrastive Learning for Self-Supervised Visual Pre-Training},
  author    =   {Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2021}
}

@inproceedings{Mao2021pose,
  title     =   {{FCPose}: Fully Convolutional Multi-Person Pose Estimation With Dynamic Instance-Aware Convolutions},
  author    =   {Mao, Weian and  Tian, Zhi  and Wang, Xinlong  and Shen, Chunhua},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2021}
}

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact Chunhua Shen.

Owner
Adelaide Intelligent Machines (AIM) Group
Adelaide Intelligent Machines (AIM) Group
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022