Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

Related tags

Deep LearningJANUS
Overview

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design

This repository contains code for the paper: JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design. By: AkshatKumar Nigam, Robert Pollice, Alán Aspuru-Guzik

Package Requirements:

Using The Code:

The code can be run using:

python ./JANUS.py

Within params_init.py, a user has the option to provide:

  1. A function for calculting property values (see function calc_prop).
  2. Input parameters that are to be used by JANUS (see function generate_params). Initial parameters are provided. These are picked based on prior experience by the authors of the paper.

Output Generation:

All results from running JANUS will be stored here. The following files will be created:

  1. fitness_explore.txt: Fitness values for all molecules from the exploration component of JANUS.
  2. fitness_local_search.txt: Fitness values for all molecules from the exploitation component of JANUS.
  3. generation_all_best.txt: Smiles and fitness value for the best molecule encountered in every generation (iteration).
  4. init_mols.txt: List of molecules used to initialte JANUS.
  5. population_explore.txt: SMILES for all molecules from the exploration component of JANUS.
  6. population_local_search.txt: SMILES for all molecules from the exploitation component of JANUS.

Paper Results/Reproducibility:

Our code and results for each experiment in the paper can be found here:

Questions, problems?

Make a github issue 😄 . Please be as clear and descriptive as possible. Please feel free to reach out in person: (akshat[DOT]nigam[AT]mail[DOT]utoronto[DOT]ca, rob[DOT]pollice[AT]utoronto[DOT]ca)

License

Apache License 2.0

Comments
  • freeze_support runtime error with provided example

    freeze_support runtime error with provided example

    Hello, I'm trying out JANUS and if I just run the example inside the tests as provided I get

      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/multiprocessing/spawn.py", line 134, in _check_not_importing_main
        raise RuntimeError('''
    RuntimeError:
            An attempt has been made to start a new process before the
            current process has finished its bootstrapping phase.
    
            This probably means that you are not using fork to start your
            child processes and you have forgotten to use the proper idiom
            in the main module:
    
                if __name__ == '__main__':
                    freeze_support()
                    ...
    
            The "freeze_support()" line can be omitted if the program
            is not going to be frozen to produce an executable.
    

    This can be fixed by wrapping the creation and running of the JANUS agent and inside

    if __name__ == '__main__':
        torch.multiprocessing.freeze_support()
    

    see for a similar fix https://github.com/pytorch/pytorch/issues/5858#issuecomment-373950687

    I'm happy to submit a PR to fix if you like - it will be very simple

    opened by sofroniewn 4
  • Enquiring on multi-objective fitness function

    Enquiring on multi-objective fitness function

    Hi, I would like to ask if there are multiple objectives which I want the fitness function to fulfil, how would I write out the function because the example on the README.md is only for one objective (logP)?

    Thank you! :D

    opened by yipy0005 3
  • error in numpy/ list multiplication inside mutate_smi_list

    error in numpy/ list multiplication inside mutate_smi_list

    Hello, I am trying to run the provided example, but get the following error

    $ python ./example.py
        Unique and valid fragments generated: 107308
        Unique and valid fragments generated: 107308
    On generation 0/200
    /Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py:457: RuntimeWarning: overflow encountered in power
      prob_ = 1.0 / (3.0 ** ((F_50_val - fitness) / (F_50_val - F_25_val)) + 1)
        (Explr) Top Fitness: 15.811199999999957
        (Explr) Top Smile: CCCCCCCCCCCCCCCCOP(=O)(O)Oc1ccc(C=Cc2ccc(OP(=O)(O)OCCCCCCCCCCCCCCCC)cc2)cc1
    Traceback (most recent call last):
      File "/Users/nsofroniew/Documents/code/chem/janus/tests/./example.py", line 81, in <module>
      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py", line 317, in run
        mut_smi_loc = self.mutate_smi_list(smiles_local_search, "local")
      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py", line 137, in mutate_smi_list
        smi_list = smi_list * num_random_samples
    numpy.core._exceptions._UFuncNoLoopError: ufunc 'multiply' did not contain a loop with signature matching types (dtype('<U98'), dtype('int64')) -> None
    

    It looks like smi_list has become a numpy array, which is unintended and it should be a list. This can be fixed by making this line https://github.com/aspuru-guzik-group/JANUS/blob/a52e5994a108063e3fc1d692752cea0ff0240120/src/janus/janus.py#L137 be

        smi_list = list(smi_list) * num_random_samples
    

    There could be other, more desirable fixes that avoid this problem altogether. I am happy to submit a PR if this fix is desired though.

    opened by sofroniewn 2
  • Unhandled exceptions and KeyError

    Unhandled exceptions and KeyError

    I tried running JANUS.py but got a number of exceptions. In addition, the script terminated with a KeyError.

    Initial population obtained!
    Forming Fragments!
        Fragment creation: 0/10000
        Fragment creation: 1000/10000
        Fragment creation: 2000/10000
        Fragment creation: 3000/10000
        Fragment creation: 4000/10000
        Fragment creation: 5000/10000
        Fragment creation: 6000/10000
        Fragment creation: 7000/10000
        Fragment creation: 8000/10000
        Fragment creation: 9000/10000
    Process Process-5:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_1]'
    	SELFIES: [S][C][=N][N][=C][Branch1][Ring1][C][C][C][Branch1][#Branch1][O][C][Branch1][C][C][=O][C][Branch1][C][C][Branch1][C][C][C][N][N][N][Branch3_1][C][C][=C][=C][Branch1][C][N][C][=C][Ring1][#Branch1][C][#Branch1][N]
    Process Process-7:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 124, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Expl=Ring3]'
    	SELFIES: [C][Expl=Ring3][=C][Branch2][Ring1][=Branch1][C][=C][C][=C][Branch1][#C][C][=C][Ring1][=Branch1][C][=C][C][=C][C][=C][Ring1][=Branch1][Ring1][=C][F][C][Branch1][C][C][C][C][C][N][Branch1][=Branch2][S][Branch1][C][C][=Branch1][C][=O][=O][C][C][Ring1][#Branch2][C][N][Branch1][Branch1][C][C][C][C][C][C][C][C]
    Process Process-4:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch1_3]'
    	SELFIES: [C][C][=C][Branch1][=Branch1][C][C][=Ring1][=Branch1][Branch1_3][C][C][=C][C][=C][Branch1][C][C][=C][C][=C][Branch1][C][N][C][=N][Ring1][#Branch1][#Branch2][C][N][C][O][C][C][Ring1][=Branch1][C][Branch1][C][O][=C][C][=C][Ring1][=C][O][Ring1][P]
    Process Process-6:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_2]'
    	SELFIES: [C][C][=Branch1][#C][=C][C][=C][C][=Ring1][=Branch1][C][Branch1][C][F][Branch1][C][F][F][C][C][Branch1][C][C][=N][N][C][=Branch1][C][C][C][N][C][C][C][Branch1][C][N][C][C][Ring1][#Branch1][C][O][=C][C][Branch1][O][C][Branch3_2][C][N][C][C][O][C][C][Ring1][=Branch1][=O]
    Process Process-8:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch2_1]'
    	SELFIES: [C][=Branch1][C][=O][Branch1][C][O][C][N][C][=Branch1][C][=O][C][Branch2][Ring1][=Branch1][N][C][=Branch1][C][=O][C][Branch1][N][C][=C][C][=C][C][Branch2_1][Ring2][=N][Ring1][=Branch1][N][=N][O][C][Ring2][Ring1][C][S][C][C][=Ring2][Ring1][=Branch1][S][C][S][N][=C][Branch1][Ring2][N][=Ring1][Branch1][S][C][C][N]
    Process Process-11:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch2_3]'
    	SELFIES: [C][C][=C][C][Branch1][=C][C][N][Branch1][C][C][N][C][=Branch1][C][=O][C][S][C][C][C][Ring1][#Branch1][=C][C][=Ring1][O][C][=C][C][=C][C][=C][Ring1][=Branch1][O][C][=C][Branch2_3][Branch1]
    Process Process-10:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_3]'
    	SELFIES: [F][C][=C][C][=C][Branch2][Ring2][O][C][N][C][Branch2][Ring2][Ring2][C][Branch1][#C][C][C][=C][Branch1][=Branch2][C][=C][C][=C][C][=Branch1][C][=O][N][Branch1][C][C][Branch3_3][C][Branch1][C][F][C][=Ring1][#Branch1][F][=N][C][C][Ring1][C][N][C][C][N][C][C][Ring1][=Branch1][=C][=N][C][=Branch1][Branch1][=N][C][=Ring1][=Branch1][N][Branch1][C][C][C][=O][C][=C][Ring2][Ring1][=N]
    Process Process-9:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_3]'
    	SELFIES: [C][C][Branch1][#Branch2][C][=C][C][=Branch1][Ring2][=C][=Branch1][F][=N][C][=C][Branch2][Ring2][Branch1][N][Branch1][Branch2][C][=N][C][Ring1][=Branch1][=Ring1][=C][N][=C][C][=C][C][=C][Branch1][P][C][=Branch1][Ring2][=C][Ring1][=Branch1][C][Branch3_3][C][N][=C][C][=C][C][=Ring1][=Branch1][O][C][O]
    On generation 0/200
        (Explr) Top Fitness: 1.0
        (Explr) Top Smile: C=C1N=CC=C(N=CNc2ccc(N)cc2)N=C(C)[SH]1C
    Process Process-27:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_2]'
    	SELFIES: [C][O][=C][N][C][N][C][=Branch1][C][=O][N][Branch1][=Branch1][N+1][=Branch1][C][=O][O-1][C][Ring1][=Branch2][N][Ring1][N][O][C][=C][C][C][N][C][N][C][N][C][=C][C][=C][Branch1][C][F][C][Branch1][C][F][=C][Ring1][Branch2][=N][C][Branch1][C][C][Branch3_2][Branch1][=Branch1][C][Branch1][C][C][=O][S][Ring1][=Branch2][=C][C][=Ring1][#Branch1][N][C][N][C][C][=C][C][=C][C][=C][Ring1][=Branch1][C][N][=C][Branch1][=C][SH1][Branch1][C][C][C][=C][C][=C][C][=C][Ring1][=Branch1][=Branch1][C][=C][N][=C][C][=Ring1][#Branch2][C]
    Traceback (most recent call last):
      File "./JANUS.py", line 308, in 
        mut_smi_dict_local  = mut_smi_dict_local[population[top_idx]]
    KeyError: 'C=C1N=CC=C(N=CNc2ccc(N)cc2)N=C(C)[SH]1C'
    
    opened by PatWalters 2
  • multiprocessing in windows

    multiprocessing in windows

    Hi. I was run the code, but I met errors in all codes that used multiprocessing. As I know these errors came from the difference of OS.

    Since I use Windows, I wonder how to correct the code for Windows.

    Thanks.

    opened by gunwook12 1
  • "aux" folder name should be changed to make the repository compatible with Windows.

    It looks like "aux" is a reserved word in Windows and directory of this name cannot be used. This is causing error, when I try to clone the repository.

    opened by sptiwari 1
  • Question: How sensitive is the model to molecule initialization?

    Question: How sensitive is the model to molecule initialization?

    Hello, great work! I'm excited to try this out for a chemical design project I'm working on. One question that I had after reading the pre-print— how sensitive is the model to molecule initialization?

    I read that you can start JANUS with random molecules or provide it with defined molecules. Did you perform any tests on what happens if the best molecule's scaffold was ablated from the initial bank of molecules? And how much, if at all, does rational initialization improve over random molecular initialization? Does this relate back to being trapped in local minima, and would the choice of initialization help explore more chemical space?

    Thank you!

    question 
    opened by jrhorne 1
Releases(v1)
Owner
Aspuru-Guzik group repo
Aspuru-Guzik group repo
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
Atif Hassan 103 Dec 14, 2022