Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

Related tags

Deep LearningJANUS
Overview

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design

This repository contains code for the paper: JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design. By: AkshatKumar Nigam, Robert Pollice, Alán Aspuru-Guzik

Package Requirements:

Using The Code:

The code can be run using:

python ./JANUS.py

Within params_init.py, a user has the option to provide:

  1. A function for calculting property values (see function calc_prop).
  2. Input parameters that are to be used by JANUS (see function generate_params). Initial parameters are provided. These are picked based on prior experience by the authors of the paper.

Output Generation:

All results from running JANUS will be stored here. The following files will be created:

  1. fitness_explore.txt: Fitness values for all molecules from the exploration component of JANUS.
  2. fitness_local_search.txt: Fitness values for all molecules from the exploitation component of JANUS.
  3. generation_all_best.txt: Smiles and fitness value for the best molecule encountered in every generation (iteration).
  4. init_mols.txt: List of molecules used to initialte JANUS.
  5. population_explore.txt: SMILES for all molecules from the exploration component of JANUS.
  6. population_local_search.txt: SMILES for all molecules from the exploitation component of JANUS.

Paper Results/Reproducibility:

Our code and results for each experiment in the paper can be found here:

Questions, problems?

Make a github issue 😄 . Please be as clear and descriptive as possible. Please feel free to reach out in person: (akshat[DOT]nigam[AT]mail[DOT]utoronto[DOT]ca, rob[DOT]pollice[AT]utoronto[DOT]ca)

License

Apache License 2.0

Comments
  • freeze_support runtime error with provided example

    freeze_support runtime error with provided example

    Hello, I'm trying out JANUS and if I just run the example inside the tests as provided I get

      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/multiprocessing/spawn.py", line 134, in _check_not_importing_main
        raise RuntimeError('''
    RuntimeError:
            An attempt has been made to start a new process before the
            current process has finished its bootstrapping phase.
    
            This probably means that you are not using fork to start your
            child processes and you have forgotten to use the proper idiom
            in the main module:
    
                if __name__ == '__main__':
                    freeze_support()
                    ...
    
            The "freeze_support()" line can be omitted if the program
            is not going to be frozen to produce an executable.
    

    This can be fixed by wrapping the creation and running of the JANUS agent and inside

    if __name__ == '__main__':
        torch.multiprocessing.freeze_support()
    

    see for a similar fix https://github.com/pytorch/pytorch/issues/5858#issuecomment-373950687

    I'm happy to submit a PR to fix if you like - it will be very simple

    opened by sofroniewn 4
  • Enquiring on multi-objective fitness function

    Enquiring on multi-objective fitness function

    Hi, I would like to ask if there are multiple objectives which I want the fitness function to fulfil, how would I write out the function because the example on the README.md is only for one objective (logP)?

    Thank you! :D

    opened by yipy0005 3
  • error in numpy/ list multiplication inside mutate_smi_list

    error in numpy/ list multiplication inside mutate_smi_list

    Hello, I am trying to run the provided example, but get the following error

    $ python ./example.py
        Unique and valid fragments generated: 107308
        Unique and valid fragments generated: 107308
    On generation 0/200
    /Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py:457: RuntimeWarning: overflow encountered in power
      prob_ = 1.0 / (3.0 ** ((F_50_val - fitness) / (F_50_val - F_25_val)) + 1)
        (Explr) Top Fitness: 15.811199999999957
        (Explr) Top Smile: CCCCCCCCCCCCCCCCOP(=O)(O)Oc1ccc(C=Cc2ccc(OP(=O)(O)OCCCCCCCCCCCCCCCC)cc2)cc1
    Traceback (most recent call last):
      File "/Users/nsofroniew/Documents/code/chem/janus/tests/./example.py", line 81, in <module>
      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py", line 317, in run
        mut_smi_loc = self.mutate_smi_list(smiles_local_search, "local")
      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py", line 137, in mutate_smi_list
        smi_list = smi_list * num_random_samples
    numpy.core._exceptions._UFuncNoLoopError: ufunc 'multiply' did not contain a loop with signature matching types (dtype('<U98'), dtype('int64')) -> None
    

    It looks like smi_list has become a numpy array, which is unintended and it should be a list. This can be fixed by making this line https://github.com/aspuru-guzik-group/JANUS/blob/a52e5994a108063e3fc1d692752cea0ff0240120/src/janus/janus.py#L137 be

        smi_list = list(smi_list) * num_random_samples
    

    There could be other, more desirable fixes that avoid this problem altogether. I am happy to submit a PR if this fix is desired though.

    opened by sofroniewn 2
  • Unhandled exceptions and KeyError

    Unhandled exceptions and KeyError

    I tried running JANUS.py but got a number of exceptions. In addition, the script terminated with a KeyError.

    Initial population obtained!
    Forming Fragments!
        Fragment creation: 0/10000
        Fragment creation: 1000/10000
        Fragment creation: 2000/10000
        Fragment creation: 3000/10000
        Fragment creation: 4000/10000
        Fragment creation: 5000/10000
        Fragment creation: 6000/10000
        Fragment creation: 7000/10000
        Fragment creation: 8000/10000
        Fragment creation: 9000/10000
    Process Process-5:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_1]'
    	SELFIES: [S][C][=N][N][=C][Branch1][Ring1][C][C][C][Branch1][#Branch1][O][C][Branch1][C][C][=O][C][Branch1][C][C][Branch1][C][C][C][N][N][N][Branch3_1][C][C][=C][=C][Branch1][C][N][C][=C][Ring1][#Branch1][C][#Branch1][N]
    Process Process-7:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 124, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Expl=Ring3]'
    	SELFIES: [C][Expl=Ring3][=C][Branch2][Ring1][=Branch1][C][=C][C][=C][Branch1][#C][C][=C][Ring1][=Branch1][C][=C][C][=C][C][=C][Ring1][=Branch1][Ring1][=C][F][C][Branch1][C][C][C][C][C][N][Branch1][=Branch2][S][Branch1][C][C][=Branch1][C][=O][=O][C][C][Ring1][#Branch2][C][N][Branch1][Branch1][C][C][C][C][C][C][C][C]
    Process Process-4:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch1_3]'
    	SELFIES: [C][C][=C][Branch1][=Branch1][C][C][=Ring1][=Branch1][Branch1_3][C][C][=C][C][=C][Branch1][C][C][=C][C][=C][Branch1][C][N][C][=N][Ring1][#Branch1][#Branch2][C][N][C][O][C][C][Ring1][=Branch1][C][Branch1][C][O][=C][C][=C][Ring1][=C][O][Ring1][P]
    Process Process-6:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_2]'
    	SELFIES: [C][C][=Branch1][#C][=C][C][=C][C][=Ring1][=Branch1][C][Branch1][C][F][Branch1][C][F][F][C][C][Branch1][C][C][=N][N][C][=Branch1][C][C][C][N][C][C][C][Branch1][C][N][C][C][Ring1][#Branch1][C][O][=C][C][Branch1][O][C][Branch3_2][C][N][C][C][O][C][C][Ring1][=Branch1][=O]
    Process Process-8:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch2_1]'
    	SELFIES: [C][=Branch1][C][=O][Branch1][C][O][C][N][C][=Branch1][C][=O][C][Branch2][Ring1][=Branch1][N][C][=Branch1][C][=O][C][Branch1][N][C][=C][C][=C][C][Branch2_1][Ring2][=N][Ring1][=Branch1][N][=N][O][C][Ring2][Ring1][C][S][C][C][=Ring2][Ring1][=Branch1][S][C][S][N][=C][Branch1][Ring2][N][=Ring1][Branch1][S][C][C][N]
    Process Process-11:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch2_3]'
    	SELFIES: [C][C][=C][C][Branch1][=C][C][N][Branch1][C][C][N][C][=Branch1][C][=O][C][S][C][C][C][Ring1][#Branch1][=C][C][=Ring1][O][C][=C][C][=C][C][=C][Ring1][=Branch1][O][C][=C][Branch2_3][Branch1]
    Process Process-10:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_3]'
    	SELFIES: [F][C][=C][C][=C][Branch2][Ring2][O][C][N][C][Branch2][Ring2][Ring2][C][Branch1][#C][C][C][=C][Branch1][=Branch2][C][=C][C][=C][C][=Branch1][C][=O][N][Branch1][C][C][Branch3_3][C][Branch1][C][F][C][=Ring1][#Branch1][F][=N][C][C][Ring1][C][N][C][C][N][C][C][Ring1][=Branch1][=C][=N][C][=Branch1][Branch1][=N][C][=Ring1][=Branch1][N][Branch1][C][C][C][=O][C][=C][Ring2][Ring1][=N]
    Process Process-9:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_3]'
    	SELFIES: [C][C][Branch1][#Branch2][C][=C][C][=Branch1][Ring2][=C][=Branch1][F][=N][C][=C][Branch2][Ring2][Branch1][N][Branch1][Branch2][C][=N][C][Ring1][=Branch1][=Ring1][=C][N][=C][C][=C][C][=C][Branch1][P][C][=Branch1][Ring2][=C][Ring1][=Branch1][C][Branch3_3][C][N][=C][C][=C][C][=Ring1][=Branch1][O][C][O]
    On generation 0/200
        (Explr) Top Fitness: 1.0
        (Explr) Top Smile: C=C1N=CC=C(N=CNc2ccc(N)cc2)N=C(C)[SH]1C
    Process Process-27:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_2]'
    	SELFIES: [C][O][=C][N][C][N][C][=Branch1][C][=O][N][Branch1][=Branch1][N+1][=Branch1][C][=O][O-1][C][Ring1][=Branch2][N][Ring1][N][O][C][=C][C][C][N][C][N][C][N][C][=C][C][=C][Branch1][C][F][C][Branch1][C][F][=C][Ring1][Branch2][=N][C][Branch1][C][C][Branch3_2][Branch1][=Branch1][C][Branch1][C][C][=O][S][Ring1][=Branch2][=C][C][=Ring1][#Branch1][N][C][N][C][C][=C][C][=C][C][=C][Ring1][=Branch1][C][N][=C][Branch1][=C][SH1][Branch1][C][C][C][=C][C][=C][C][=C][Ring1][=Branch1][=Branch1][C][=C][N][=C][C][=Ring1][#Branch2][C]
    Traceback (most recent call last):
      File "./JANUS.py", line 308, in 
        mut_smi_dict_local  = mut_smi_dict_local[population[top_idx]]
    KeyError: 'C=C1N=CC=C(N=CNc2ccc(N)cc2)N=C(C)[SH]1C'
    
    opened by PatWalters 2
  • multiprocessing in windows

    multiprocessing in windows

    Hi. I was run the code, but I met errors in all codes that used multiprocessing. As I know these errors came from the difference of OS.

    Since I use Windows, I wonder how to correct the code for Windows.

    Thanks.

    opened by gunwook12 1
  • "aux" folder name should be changed to make the repository compatible with Windows.

    It looks like "aux" is a reserved word in Windows and directory of this name cannot be used. This is causing error, when I try to clone the repository.

    opened by sptiwari 1
  • Question: How sensitive is the model to molecule initialization?

    Question: How sensitive is the model to molecule initialization?

    Hello, great work! I'm excited to try this out for a chemical design project I'm working on. One question that I had after reading the pre-print— how sensitive is the model to molecule initialization?

    I read that you can start JANUS with random molecules or provide it with defined molecules. Did you perform any tests on what happens if the best molecule's scaffold was ablated from the initial bank of molecules? And how much, if at all, does rational initialization improve over random molecular initialization? Does this relate back to being trapped in local minima, and would the choice of initialization help explore more chemical space?

    Thank you!

    question 
    opened by jrhorne 1
Releases(v1)
Owner
Aspuru-Guzik group repo
Aspuru-Guzik group repo
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022