This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

Related tags

Deep LearningTANS
Overview

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning

This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning. Accepted to NeurIPS 2021 (Spotlight).

@inproceedings{jeong2021task,
    title     = {Task-Adaptive Neural Network Search with Meta-Contrastive Learning},
    author    = {Jeong, Wonyong and Lee, Hayeon and Park, Geon and Hyung, Eunyoung and Baek, Jinheon and Hwang, Sung Ju},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
    year      = {2021}
} 

Overview

Most conventional Neural Architecture Search (NAS) approaches are limited in that they only generate architectures without searching for the optimal parameters. While some NAS methods handle this issue by utilizing a supernet trained on a large-scale dataset such as ImageNet, they may be suboptimal if the target tasks are highly dissimilar from the dataset the supernet is trained on. To address such limitations, we introduce a novel problem of Neural Network Search (NNS), whose goal is to search for the optimal pretrained network for a novel dataset and constraints (e.g. number of parameters), from a model zoo. Then, we propose a novel framework to tackle the problem, namely Task-Adaptive Neural Network Search (TANS). Given a model-zoo that consists of network pretrained on diverse datasets, we use a novel amortized meta-learning framework to learn a cross-modal latent space with contrastive loss, to maximize the similarity between a dataset and a high-performing network on it, and minimize the similarity between irrelevant dataset-network pairs. We validate the effectiveness and efficiency of our method on ten real-world datasets, against existing NAS/AutoML baselines. The results show that our method instantly retrieves networks that outperform models obtained with the baselines with significantly fewer training steps to reach the target performance, thus minimizing the total cost of obtaining a task-optimal network.

Prerequisites

  • Python 3.8 (Anaconda)
  • PyTorch 1.8.1
  • CUDA 10.2

Environmental Setup

Please install packages thorugh requirements.txt after creating your own environment with python 3.8.x.

$ conda create --name ENV_NAME python=3.8
$ conda activate ENV_NAME
$ conda install pytorch==1.8.1 torchvision cudatoolkit=10.2 -c pytorch
$ pip install --upgrade pip
$ pip install -r requirements.txt

Preparation

We provide our model-zoo consisting of 14K pretrained models on various Kaggle datasets. We also share the full raw datasets collected from Kaggle as well as their processed versions of datasets for meta-training and meta-test in our learning framework. Except for the raw datasets, all the processed files are required to perform the cross model retrieval learning and meta-testing on unseen datasets. Please download following files before training or testing. (Due to the heavy file size, some files will be updated by Oct. 28th. Sorry for the inconvenience).

No. File Name Description Extension Size Download
1 p_mod_zoo Processed 14K Model-Zoo pt 91.9Mb Link
2 ofa_nets Pretrained OFA Supernets zip - Pending
3 raw_m_train Raw Meta-Training Datasets zip - Pending
4 raw_m_test Raw Meta-Test Datasets zip - Pending
5 p_m_train Processed Meta-Training Files pt 69Mb Link
6 p_m_test Processed Meta-Test Files zip 11.6Gb Link

After download, specify their location on following arguments:

  • data-path: 5 and 6 should be placed. 6 must be unzipped.
  • model-zoo: path where 1 should be located. Please give full path to the file. i.e. path/to/p_mod_zoo.pt
  • model-zoo-raw: path where 2 should be placed and unzipped (required for meta-test experiments)

Learning the Cross Modal Retrieval Space

Please use following command to learn the cross modal space. Keep in mind that correct model-zoo and data-path are required. Forbase-path, this path is for storing training outcomes, such as resutls, logs, the cross modal embeddings, etc.

$ python3 main.py --gpu $1 \
                  --mode train \
                  --batch-size 140 \
                  --n-epochs 10000 \
                  --base-path path/for/storing/outcomes/\
                  --data-path path/to/processed/dataset/is/stored/\
                  --model-zoo path/to/model_zoo.pt\
                  --seed 777 

You can also simply run a script file after updating the paths.

$ cd scripts
$ sh train.sh GPU_NO

Meta-Test Experiment

You can use following command for testing the cross-modal retrieval performance on unseen meta-test datasets. In this experiment, load-path which is the base-path of the cross modal space that you previously built and model-zoo-raw which is path for the OFA supernets pretrained on meta-training datasets are required.

$ python3 ../main.py --gpu $1 \
                     --mode test \
                     --n-retrievals 10\
                     --n-eps-finetuning 50\
                     --batch-size 32\
                     --load-path path/to/outcomes/stored/\
                     --data-path path/to/processed/dataset/is/stored/\
                     --model-zoo path/to/model_zoo.pt\
                     --model-zoo-raw path/to/pretrained/ofa/models/\
                     --base-path path/for/storing/outcomes/\
                     --seed 777

You can also simply run a script file after updating the paths.

$ cd scripts
$ sh test.sh GPU_NO
Owner
Wonyong Jeong
Ph.D. Candidate @ KAIST AI
Wonyong Jeong
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023