Implementations of paper Controlling Directions Orthogonal to a Classifier

Overview

Classifier Orthogonalization

Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022,  Yilun Xu, Hao He, Tianxiao Shen, Tommi Jaakkola

Let's construct orthogonal classifiers for controlled style transfer, domain adaptation with label shifts and fairness problems 🤠 !

Outline

Controlled Style Transfer

Prepare CelebA-GH dataset:

python style_transfer/celeba_dataset.py --data_dir {path}

path: path to the CelebA dataset

bash example: python style_transfer/celeba_dataset.py --data_dir ./data

One can modify the domain_fn dictionary in the style_transfer/celeba_dataset.py file to create new groups 💡

Step 1: Train principal, full and oracle orthogonal classifiers

sh style_transfer/train_classifiers.sh {gpu} {path} {dataset} {alg}

gpu: the number of gpu
path: path to the dataset (Celeba or MNIST)
dataset: dataset (Celeba | CMNIST)
alg: ERM, Fish, TRM or MLDG

CMNIST bash example: sh style_transfer/train_classifiers.sh 0 ./data CMNIST ERM

Step 2: Train controlled CycleGAN

python style_transfer/train_cyclegan.py --data_dir {path} --dataset {dataset} \
  --obj {obj} --name {name}

path: path to the dataset (Celeba or MNIST)
dataset: dataset (Celeba | CMNIST)
obj: training objective (vanilla | orthogonal)
name: name of the model

CMNIST bash example: python style_transfer/train_cyclegan.py --data_dir ./data --dataset CMNIST --obj orthogonal --name cmnist

To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097

Evaluation and Generation

python style_transfer/generate.py --data_dir {path} --dataset {dataset} --name {name} \
 --obj {obj} --out_path {out_path} --resume_epoch {epoch} (--save)

path: path to the dataset (Celeba or MNIST)
dataset: dataset (Celeba | CMNIST)
name: name of the model
obj: training objective (vanilla | orthogonal)
out_path: output path
epoch: resuming epoch of checkpoint

Images will be save to style_transfer/generated_images/out_path

CMNIST bash example: python style_transfer/generate.py --data_dir ./data --dataset CMNIST --name cmnist --obj orthogonal --out_path cmnist_out --resume_epoch 5


Domain Adaptation (DA) with label shifts

Prepare src/tgt pairs with label shifts

Please cd /da/data and run

python {dataset}.py --r {r0} {r1}

r0: subsample ratio for the first half classes (default=0.7)
r1: subsample ratio for the first half classes (default=0.3)
dataset: mnist | mnistm | svhn | cifar | stl | signs | digits

For SynthDigits / SynthSignsdataset, please download them at link_digits / link_signs. All the other datasets will be automatically downloaded 😉

Training

python da/vada_train.py --r {r0} {r1} --src {source} --tgt {target}  --seed {seed} \
 (--iw) (--orthogonal) (--source_only)

r0: subsample ratio for the first half classes (default=0.7)
r1: subsample ratio for the first half classes (default=0.3)
source: source domain (mnist | mnistm | svhn | cifar | stl | signs | digits)
target: target domain (mnist | mnistm | svhn | cifar | stl | signs | digits)
seed: random seed
--source_only: vanilla ERM on the source domain
--iw: use importance-weighted domain adaptation algorithm [1]
--orthogonal: use orthogonal classifier
--vada: vanilla VADA [2]

Fairness

python fairness/methods/train.py --data {data} --gamma {gamma} --sigma {sigma} \
 (--orthogonal) (--laftr) (--mifr) (--hsic)

data: dataset (adult | german)
gamma: hyper-parameter for MIFR, HSIC, LAFTR
sigma: hyper-parameter for HSIC (kernel width)
--orthogonal: use orthogonal classifier
--MIFR: use L-MIFR algorithm [3]
--HSIC: use ReBias algorithm [4]
--LAFTR: use LAFTR algorithm [5]



Reference

[1] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J. Gordon. Domain adaptation with conditional distribution matching and generalized label shift. ArXiv, abs/2003.04475, 2020.

[2] Rui Shu, H. Bui, H. Narui, and S. Ermon. A dirt-t approach to unsupervised domain adaptation. ArXiv, abs/1802.08735, 2018.

[3] Jiaming Song, Pratyusha Kalluri, Aditya Grover, Shengjia Zhao, and S. Ermon. Learning controllable fair representations. In AISTATS, 2019.

[4] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning de-biased representations with biased representations. In ICML, 2020.

[5] David Madras, Elliot Creager, T. Pitassi, and R. Zemel. Learning adversarially fair and transferable representations. In ICML, 2018.


The implementation of this repo is based on / inspired by:

Owner
Yilun Xu
Hello!
Yilun Xu
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022