GrailQA: Strongly Generalizable Question Answering

Related tags

Deep LearningGrailQA
Overview

GrailQA: Strongly Generalizable Question Answering

Contributions Welcome License language-python3 made-with-Pytorch paper image

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.

This is the accompanying code for the paper "Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases" published at TheWebConf (previously WWW) 2021. For dataset and leaderboard, please refer to the homepage of GrailQA. In this repository, we provide the code for the baseline models for reproducibility and demonstrate how to work with this dataset.

Package Description

This repository is structured as follows:

GrailQA/
├─ model_configs/
    ├─ train/: Configuration files for training
    ├─ test/: Configuration files for inference
├─ data/: Data files for training, validation, and test
├─ ontology/: Processed Freebase ontology files
    ├─ domain_dict: Mapping from a domain in Freebase Commons to all schema items in it
    ├─ domain_info: Mapping from a schema item to a Freebase Commons domain it belongs to
    ├─ fb_roles: Domain and range information for a relation (Note that here domain means a different thing from domains in Freebase Commons)
    ├─ fb_types: Class hierarchy in Freebase
    ├─ reverse_properties: Reverse properties in Freebase 
├─ bert_configs/: BERT configuration used by pytorch_transformer, which you are very unlikely to modify
├─ entity_linking_results/: Entity linking results 
├─ entity_linker/: source code for the entity linker, which is a separate module from our main model
├─ vocabulary/: Preprocessed vocabulary, which is only required by our GloVe-based models
├─ cache/: Cached results for SPARQL queries, which are used to accelerate the experiments by caching many SPARQL query results offline
├─ saved_models/: Trained models
├─ utils/:
    ├─ bert_interface.py: Interface to BERT 
    ├─ logic_form_util: Tools related to logical forms, including the exact match checker for two logical forms
    ├─ search_over_graphs.py: Generate candidate logical forms for our Ranking models
    ├─ sparql_executor: Sparql-related tools
├─ bert_constrained_seq2seq.py: BERT-based model for both Ranking and Transduction
├─ bert_seq2seq_reader.py: Data reader for BERT-based models
├─ constrained_seq2seq.py: GloVe-based model for both Ranking and Transduction
├─ constrained_seq2seq_reader.py: Data reader for GloVe-based models
├─ run.py: Main function

Setup

Follow these steps if you want to reproduce the results in the paper.

  1. Follow Freebase Setup to set up a Virtuoso triplestore service. After starting your virtuoso service, replace the url in utils/sparql_executer.py with your own.
  2. Download cache files from https://1drv.ms/u/s!AuJiG47gLqTznjfRRxdW5YDYFt3o?e=GawH1f and put all the files under cache/.
  3. Download trained models from https://1drv.ms/u/s!AuJiG47gLqTznxbenfeRBrTuTbWz?e=g5Nazi and put all the files under saved_models/.
  4. Download GrailQA dataset and put it under data/.
  5. Install all required libraries:
$ pip install -r requirements.txt

(Note: we have included our adapted version of AllenNLP in this repo so there's no need to separately install that.)

Reproduce Our Results

The predictions of our baseline models can be found via CodaLab. Run predict command to reproduce the predictions. There are several arguments to configure to run predict:

python run.py predict
  [path_to_saved_model]
  [path_to_test_data]
  -c [path_to_the_config_file]
  --output-file [results_file_name] 
  --cuda-device [cuda_device_to_use]

Specifically, to run Ranking+BERT:

$ PYTHONHASHSEED=23 python run.py predict saved_models/BERT/model.tar.gz data/grailqa_v1.0_test_public.json --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface --use-dataset-reader --predictor seq2seq -c model_configs/test/bert_ranking.jsonnet --output-file bert_ranking.txt --cuda-device 0

To run Ranking+GloVe:

$ PYTHONHASHSEED=23 python run.py predict predict saved_models/GloVe/model.tar.gz data/grailqa_v1.0_test_public.json --include-package constrained_seq2seq --include-package constrained_seq2seq_reader --predictor seq2seq --use-dataset-reader -c model_configs/test/glove_ranking.jsonnet --output-file glove_ranking.txt --cuda-device 0

To run Transduction+BERT:

$ PYTHONHASHSEED=23 python run.py predict saved_models/BERT/model.tar.gz data/grailqa_v1.0_test_public.json --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface --use-dataset-reader --predictor seq2seq -c model_configs/test/bert_vp.jsonnet --output-file bert_vp.txt --cuda-device 0

To run Transduction+GloVe:

$ PYTHONHASHSEED=23 python run.py predict predict saved_models/GloVe/model.tar.gz data/grailqa_v1.0_test_public.json --include-package constrained_seq2seq --include-package constrained_seq2seq_reader --predictor seq2seq --use-dataset-reader -c model_configs/test/glove_vp.jsonnet --output-file glove_vp.txt --cuda-device 0

Entity Linking

We also release our code for entity linking to facilitate future research. Similar to most other KBQA methods, entity linking is a separate module from our main model. If you just want to run our main models, you do not need to re-run our entity linking module because our models directly use the entity linking results under entity_linking/.

Our entity linker is based on BERT-NER and the popularity-based entity disambiguation in aqqu. Specifically, we use the NER model to identify a set of entity mentions, and then use the identified mentions to retieve Freebase entities from the entity memory constructed from Freebase entity mentions information (i.e., mentions in FACC1 and all alias in Freebase if not included in FACC11).

To run our entity linker, first download the mentions data from https://1drv.ms/u/s!AuJiG47gLqTznjl7VbnOESK6qPW2?e=HDy2Ye and put all data under entity_linker/data/. Second, download our trained NER model from https://1drv.ms/u/s!AuJiG47gLqTznjge7wLqAZiSMIcU?e=5RpKaC, which is trained using the training data of GrailQA, and put it under entity_linker/BERT_NER/. Then you should be all set! We provide a use example in entity_linker/bert_entity_linker.py. Follow the use example to identiy entities using our entity linker for your own data.

[1]: FACC1 containes the mentions information for around 1/8 of Freebase entities, including different mentions for those entities and the frequency for each mention. For entities not included in FACC1, we use the following properties to retrieve the mentions for each entity: , , . Note that we don't have frequency information for those entity mentions, so we simply treat the number of occurences as 1 for all of them in our implementation.

Train New Models

You can also use our code to train new models.

Training Configuration

Following AllenNLP, our train command also takes a configuration file as input to specify all model hyperparameters and training related parameters such as learning rate, batch size, cuda device, etc. Most parameters in the training configuration files (i.e., files under model_configs/train/) are hopefully intutive based on their names, so we will only explain those parameters that might be confusing here.

- ranking: Ranking model or generation mode. True for Ranking, and false for Transduction.
- offline: Whether to use cached files under cache/.
- num_constants_per_group: Number of schema items in each chunk for BERT encoding.
- gq1: True for GraphQuestions, and false for GrailQA.
- use_sparql: Whether to use SPARQL as the target query. Set to be false, because in this paper we are using S-expressions.
- use_constrained_vocab: Whether to do vocabulary pruning or not.
- constrained_vocab: If we do vocabulary pruning, how to do it? Options include 1_step, 2_step and mix2.
- perfect_entity_linking: Whether to assume gold entities are given.

Training Command

To train the BERT-based model, run:

$ PYTHONHASHSEED=23 python run.py train model_configs/train/train_bert.jsonnet --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface -s [your_path_specified_for_training]

To train the GloVe-based model, run:

$ PYTHONHASHSEED=23 python run.py train model_configs/train/train_glove.jsonnet --include-package constrained_seq2seq --include-package constrained_seq2seq_reader -s [your_path_specified_for_training]

Online Running Time

We also show the running time of inference in online mode, in which offline caches are disabled. The aim of this setting is to mimic the real scenario in production. To report the average running time, we randomly sample 1,000 test questions for each model and run every model on a single GeoForce RTX 2080-ti GPU card with batch size 1. A comparison of different models is shown below:

Transduction Transduction-BERT Transduction-VP Transduction-BERT-VP Ranking Ranking-BERT
Running time (seconds) 60.899 50.176 4.787 1.932 115.459 80.892

The running time is quite significant when either ranking mode or vocabulary pruning is activated. This is because running SPARQL queries to query the 2-hop information (i.e., either candidate logical forms for ranking or 2-hop schema items for vocabulary pruning) is very time-consuming. This is also a general issue for the enumeration+ranking framework in KBQA, which is used by many existing methods. This issue has to some extend been underaddressed so far. A common practice is to use offline cache to store the exectuions of all related SPARQL queries, which assumes the test questions are known in advance. This assumption is true for existing KBQA benchmarks but is not realistic for a real production system. How to improve the efficiency of KBQA models while maintaining their efficacy is still an active area for research.

Citation

@inproceedings{gu2021beyond,
  title={Beyond IID: three levels of generalization for question answering on knowledge bases},
  author={Gu, Yu and Kase, Sue and Vanni, Michelle and Sadler, Brian and Liang, Percy and Yan, Xifeng and Su, Yu},
  booktitle={The World Wide Web Conference},
  year={2021},
  organization={ACM}
}
Owner
OSU DKI Lab
The Data, Knowledge, and Intelligence Lab at Ohio State University
OSU DKI Lab
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022