AVD Quickstart Containerlab

Overview

AVD Quickstart Containerlab

WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example:

  • README is still work-in-progress
  • Lab configuration and adresses are hardcoded and have to be redefined in many different files if you setup is different. That will be simplified before the final release.
  • Some workflow and code optimization required.

Overview

This repository helps to build your own AVD test lab based on Containerlab in minutes. The main target is to provide an easy way to build the environment to learn and test AVD automation. The lab can be used together with CVP VM, but it's not mandatory.

WARNING: if CVP VM is part of the lab, make sure that it's reachable and credentials configured on CVP are matching the lab.

Release Notes:

  • 0.1
    • initial release with many shortcuts
  • 0.2
    • Fix bugs.
    • Improve lab topology.
    • Improve lab workflow.
    • Add EVPN AA scenario.

Lab Prerequisites

The lab requires a single Linux host (Ubuntu server recommended) with Docker and Containerlab installed. It's possible to run Containerlab on MacOS, but that was not tested. Dedicated Linux machine is currently the preferred option.

To test AVD with CVP, KVM can be installed on the same host. To install KVM, check this guide or any other resource available on internet. Once KVM is installed, you can use one of the following repositories to install CVP:

It is definitely possible to run CVP on a dedicated host and a different hypervisor as long as it can be reached by cLab devices.

NOTE: to use CVP VM with container lab it's not required to recompile Linux core. That's only required if you plan to use vEOS on KVM for you lab setup.

The lab setup diagram:

lab diagram

How To Use The Lab

  1. Clone this repository to your lab host: git clone https://github.com/arista-netdevops-community/avd-quickstart-containerlab.git
  2. It is recommended to remove git remote as changes are not supposed to be pushed to the origin: git remote remove origin
  3. Change to the lab directory: cd avd-quickstart-containerlab
  4. Before running the lab it is recommended to create a dedicated git branch for you lab experiments to keep original branch clean.
  5. Check makefile help for the list of commands available: make help
[email protected]:~/avd-quickstart-containerlab$ make help
avd_build_cvp                  build configs and configure switches via eAPI
avd_build_eapi                 build configs and configure switches via eAPI
build                          Build docker image
clab_deploy                    Deploy ceos lab
clab_destroy                   Destroy ceos lab
clab_graph                     Build lab graph
help                           Display help message
inventory_evpn_aa              onboard devices to CVP
inventory_evpn_mlag            onboard devices to CVP
onboard                        onboard devices to CVP
rm                             Remove all containerlab directories
run                            run docker image. This requires cLab "custom_mgmt" to be present
  1. If you don't have cEOS image on your host yet, download it from arista.com and import. Make sure that image name is matching the parameters defined in CSVs_EVPN_AA/clab.yml or CSVs_EVPN_MLAG/clab.yml
  2. Use make build to build avd-quickstart:latest container image. If that was done earlier and the image already exists, you can skip this step.
  3. Run make inventory_evpn_aa or make inventory_evpn_mlag to build the inventory for EVPN AA or MLAG scenario. Ideally AVD inventroy must be a different repository, but for simplicity script will generate inventory in the current directory.
  4. Review the inventory generated by avd-quickstart. You can optionally git commit the changes.
  5. Run make clab_deploy to build the containerlab. Wait until the deployment will finish.
  6. Execute make run to run avd-quickstart container.
  7. If CVP VM is used in the lab, onboard cLab switches with make onboard. Once the script behind this shortcut wil finish, devices will appear in the CVP inventory.
  8. To execute Ansible AVD playbook, use make avd_build_eapi or make avd_build_cvp shortcuts. That will execute playbook/fabric-deploy-eapi.yml or playbook/fabric-deploy-cvp.yml.
  9. Run make avd_validate to execute AVD state validation playbook playbooks/validate-states.yml.
  10. Run make avd_snapshot if you want to collect a network snapshot with playbooks/snapshot.yml.
  11. Connect to hosts and switches and run some pings, show commands, etc. To connect to a lab device, you can type it's hostname in the container:

connect to a device from the container

NOTE: device hostnames are currently hardcoded inside the avd-quickstart container. If you have customized the inventory, ssh to the device manually. That will be improved in the coming versions.

You can optionally git commit the changes and start playing with the lab. Use CSVs to add some VLANs, etc. for example. Re-generate the inventory and check how the AVD repository data changes.

How To Destroy The Lab

  1. Exit the avd-quickstart container by typing exit
  2. Execute make clab_destroy to destroy the containerlab.
  3. Execute make rm to delete the generated AVD inventory.
Owner
Carl Buchmann
Systems Engineer @ Arista Networks Passionate about designing networks and automating them!
Carl Buchmann
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023