Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

Overview

TTNet-Pytorch

python-image pytorch-image

The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis"
An introduction of the project could be found here (from the authors)


Demo

demo

1. Features

  • Ball detection global stage

  • Ball detection local stage (refinement)

  • Events Spotting detection (Bounce and Net hit)

  • Semantic Segmentation (Human, table, and scoreboard)

  • Multi-Task learning

  • Distributed Data Parallel Training

  • Enable/Disable modules in the TTNet model

  • Smooth labeling for event spotting

  • TensorboardX

  • (Update 2020.06.23): Training much faster, achieve > 120 FPS in the inference phase on a single GPU (GTX1080Ti).

  • (Update 2020.07.03): The implementation could achieve comparative results with the reported results in the TTNet paper.

  • (Update 2020.07.06): There are several limitations of the TTNet Paper (hints: Loss function, input size, and 2 more). I have implemented the task with a new approach and a new model. Now the new model could achieve:

    • > 130FPS inference,
    • ~0.96 IoU score for the segmentation task
    • < 4 pixels (in the full HD resolution (1920x1080)) of Root Mean Square Error (RMSE) for the ball detection task
    • ~97% percentage of correction events (PCE) and smooth PCE (SPCE).

2. Getting Started

Requirement

pip install -U -r requirement.txt

You will also need PyTurboJPEG:

$ sudo apt-get install libturbojpeg
...
$ pip install PyTurboJPEG
...

Other instruction for setting up virtual environments is here

2.1. Preparing the dataset

The instruction for the dataset preparation is here

2.2. Model & Input tensors

TTNet model architecture:

architecture

Input tensor structure

input tensor

2.3. How to run

2.3.1. Training

2.3.1.1. Single machine, single gpu
python main.py --gpu_idx 0

By default (as the above command), there are 4 modules in the TTNet model: global stage, local stage, event spotting, segmentation. You can disable one of the modules, except the global stage module.
An important note is if you disable the local stage module, the event spotting module will be also disabled.

  • You can disable the segmentation stage:
python main.py --gpu_idx 0 --no_seg
  • You can disable the event spotting module:
python main.py --gpu_idx 0 --no_event
  • You can disable the local stage, event spotting, segmentation modules:
python main.py --gpu_idx 0 --no_local --no_seg --no_event
2.3.1.2. Multi-processing Distributed Data Parallel Training

We should always use the nccl backend for multi-processing distributed training since it currently provides the best distributed training performance.

  • Single machine (node), multiple GPUs
python main.py --dist-url 'tcp://127.0.0.1:29500' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0
  • Two machines (two nodes), multiple GPUs

First machine

python main.py --dist-url 'tcp://IP_OF_NODE1:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 2 --rank 0

Second machine

python main.py --dist-url 'tcp://IP_OF_NODE2:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 2 --rank 1

2.3.2. Training stratergy

The performance of the TTNet strongly depends on the global stage for ball detection. Hence, It's necessary to train the global ball stage module of the TTNet model first.

  • 1st phase: Train the global and segmentation modules with 30 epochs
./train_1st_phase.sh
  • 2nd phase: Load the trained weights to the global and the segmentation part, initialize the weight of the local stage with the weights of the global stage. In this phase, we train and just update weights of the local and the event modules. (30 epochs)
./train_2nd_phase.sh
  • 3rd phase: Fine tune all modules. Train the network with only 30 epochs
./train_3rd_phase.sh

2.3.3. Visualizing training progress

The Tensorboard was used to save loss values on the training set and the validation set. Execute the below command on the working terminal:

    cd logs/<task directory>/tensorboard/
    tensorboard --logdir=./

Then open the web browser and go to: http://localhost:6006/

2.3.4. Evaluation

The thresholds of the segmentation and event spotting tasks could be set in test.sh bash shell scripts.

./test_3rd_phase.sh

2.3.5. Demo:

Run a demonstration with an input video:

./demo.sh

Contact

If you think this work is useful, please give me a star! If you find any errors or have any suggestions, please contact me. Thank you!

Email: [email protected]

Citation

@article{TTNet,
  author = {Roman Voeikov, Nikolay Falaleev, Ruslan Baikulov},
  title = {TTNet: Real-time temporal and spatial video analysis of table tennis},
  year = {2020},
  conference = {CVPR 2020},
}

Usage

usage: main.py [-h] [--seed SEED] [--saved_fn FN] [-a ARCH] [--dropout_p P]
               [--multitask_learning] [--no_local] [--no_event] [--no_seg]
               [--pretrained_path PATH] [--overwrite_global_2_local]
               [--no-val] [--no-test] [--val-size VAL_SIZE]
               [--smooth-labelling] [--num_samples NUM_SAMPLES]
               [--num_workers NUM_WORKERS] [--batch_size BATCH_SIZE]
               [--print_freq N] [--checkpoint_freq N] [--sigma SIGMA]
               [--thresh_ball_pos_mask THRESH] [--start_epoch N]
               [--num_epochs N] [--lr LR] [--minimum_lr MIN_LR] [--momentum M]
               [-wd WD] [--optimizer_type OPTIMIZER] [--lr_type SCHEDULER]
               [--lr_factor FACTOR] [--lr_step_size STEP_SIZE]
               [--lr_patience N] [--earlystop_patience N] [--freeze_global]
               [--freeze_local] [--freeze_event] [--freeze_seg]
               [--bce_weight BCE_WEIGHT] [--global_weight GLOBAL_WEIGHT]
               [--local_weight LOCAL_WEIGHT] [--event_weight EVENT_WEIGHT]
               [--seg_weight SEG_WEIGHT] [--world-size N] [--rank N]
               [--dist-url DIST_URL] [--dist-backend DIST_BACKEND]
               [--gpu_idx GPU_IDX] [--no_cuda] [--multiprocessing-distributed]
               [--evaluate] [--resume_path PATH] [--use_best_checkpoint]
               [--seg_thresh SEG_THRESH] [--event_thresh EVENT_THRESH]
               [--save_test_output] [--video_path PATH] [--output_format PATH]
               [--show_image] [--save_demo_output]

TTNet Implementation

optional arguments:
  -h, --help            show this help message and exit
  --seed SEED           re-produce the results with seed random
  --saved_fn FN         The name using for saving logs, models,...
  -a ARCH, --arch ARCH  The name of the model architecture
  --dropout_p P         The dropout probability of the model
  --multitask_learning  If true, the weights of different losses will be
                        learnt (train).If false, a regular sum of different
                        losses will be applied
  --no_local            If true, no local stage for ball detection.
  --no_event            If true, no event spotting detection.
  --no_seg              If true, no segmentation module.
  --pretrained_path PATH
                        the path of the pretrained checkpoint
  --overwrite_global_2_local
                        If true, the weights of the local stage will be
                        overwritten by the global stage.
  --no-val              If true, use all data for training, no validation set
  --no-test             If true, dont evaluate the model on the test set
  --val-size VAL_SIZE   The size of validation set
  --smooth-labelling    If true, smoothly make the labels of event spotting
  --num_samples NUM_SAMPLES
                        Take a subset of the dataset to run and debug
  --num_workers NUM_WORKERS
                        Number of threads for loading data
  --batch_size BATCH_SIZE
                        mini-batch size (default: 16), this is the totalbatch
                        size of all GPUs on the current node when usingData
                        Parallel or Distributed Data Parallel
  --print_freq N        print frequency (default: 10)
  --checkpoint_freq N   frequency of saving checkpoints (default: 3)
  --sigma SIGMA         standard deviation of the 1D Gaussian for the ball
                        position target
  --thresh_ball_pos_mask THRESH
                        the lower thresh for the 1D Gaussian of the ball
                        position target
  --start_epoch N       the starting epoch
  --num_epochs N        number of total epochs to run
  --lr LR               initial learning rate
  --minimum_lr MIN_LR   minimum learning rate during training
  --momentum M          momentum
  -wd WD, --weight_decay WD
                        weight decay (default: 1e-6)
  --optimizer_type OPTIMIZER
                        the type of optimizer, it can be sgd or adam
  --lr_type SCHEDULER   the type of the learning rate scheduler (steplr or
                        ReduceonPlateau)
  --lr_factor FACTOR    reduce the learning rate with this factor
  --lr_step_size STEP_SIZE
                        step_size of the learning rate when using steplr
                        scheduler
  --lr_patience N       patience of the learning rate when using
                        ReduceoPlateau scheduler
  --earlystop_patience N
                        Early stopping the training process if performance is
                        not improved within this value
  --freeze_global       If true, no update/train weights for the global stage
                        of ball detection.
  --freeze_local        If true, no update/train weights for the local stage
                        of ball detection.
  --freeze_event        If true, no update/train weights for the event module.
  --freeze_seg          If true, no update/train weights for the segmentation
                        module.
  --bce_weight BCE_WEIGHT
                        The weight of BCE loss in segmentation module, the
                        dice_loss weight = 1- bce_weight
  --global_weight GLOBAL_WEIGHT
                        The weight of loss of the global stage for ball
                        detection
  --local_weight LOCAL_WEIGHT
                        The weight of loss of the local stage for ball
                        detection
  --event_weight EVENT_WEIGHT
                        The weight of loss of the event spotting module
  --seg_weight SEG_WEIGHT
                        The weight of BCE loss in segmentation module
  --world-size N        number of nodes for distributed training
  --rank N              node rank for distributed training
  --dist-url DIST_URL   url used to set up distributed training
  --dist-backend DIST_BACKEND
                        distributed backend
  --gpu_idx GPU_IDX     GPU index to use.
  --no_cuda             If true, cuda is not used.
  --multiprocessing-distributed
                        Use multi-processing distributed training to launch N
                        processes per node, which has N GPUs. This is the
                        fastest way to use PyTorch for either single node or
                        multi node data parallel training
  --evaluate            only evaluate the model, not training
  --resume_path PATH    the path of the resumed checkpoint
  --use_best_checkpoint
                        If true, choose the best model on val set, otherwise
                        choose the last model
  --seg_thresh SEG_THRESH
                        threshold of the segmentation output
  --event_thresh EVENT_THRESH
                        threshold of the event spotting output
  --save_test_output    If true, the image of testing phase will be saved
  --video_path PATH     the path of the video that needs to demo
  --output_format PATH  the type of the demo output
  --show_image          If true, show the image during demostration
  --save_demo_output    If true, the image of demonstration phase will be
                        saved
Owner
Nguyen Mau Dung
M.Sc. in HCI & Robotics | Self-driving Car Engineer | AI Engineer | Interested in 3D Computer Vision
Nguyen Mau Dung
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Nicholas Lee 3 Jan 09, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022