Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Overview

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction.
Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe, Elisa Ricci.
Apply Transformer into depth predciton and surface normal estimation.

Prepare pretrain model

we choose R50-ViT-B_16 as our encoder.

wget https://storage.googleapis.com/vit_models/imagenet21k/R50+ViT-B_16.npz 
mkdir ./model/vit_checkpoint/imagenet21k 
mv R50+ViT-B_16.npz ./model/vit_checkpoint/imagenet21k/R50+ViT-B_16.npz

Prepare Dateset

prepare nyu

mkdir -p pytorch/dataset/nyu_depth_v2
python utils/download_from_gdrive.py 1AysroWpfISmm-yRFGBgFTrLy6FjQwvwP pytorch/dataset/nyu_depth_v2/sync.zip
cd pytorch/dataset/nyu_depth_v2
unzip sync.zip

prepare kitti

cd dataset
mkdir kitti_dataset
cd kitti_dataset
### image move kitti_archives_to_download.txt into kitti_dataset
wget -i kitti_archives_to_download.txt

### label
wget https://s3.eu-central-1.amazonaws.com/avg-kitti/data_depth_annotated.zip
unzip data_depth_annotated.zip
cd train
mv * ../
cd ..  
rm -r train
cd val
mv * ../
cd ..
rm -r val
rm data_depth_annotated.zip

Environment

pip install -r requirement.txt

Run

Train

CUDA_VISIBLE_DEVICES=0,1,2,3 python bts_main.py arguments_train_nyu.txt
CUDA_VISIBLE_DEVICES=0,1,2,3 python bts_main.py arguments_train_eigen.txt

Test: Pick up nice result

CUDA_VISIBLE_DEVICES=1 python bts_test.py arguments_test_nyu.txt
python ../utils/eval_with_pngs.py --pred_path vis_att_bts_nyu_v2_pytorch_att/raw/ --gt_path ../../dataset/nyu_depth_v2/official_splits/test/ --dataset nyu --min_depth_eval 1e-3 --max_depth_eval 10 --eigen_crop
CUDA_VISIBLE_DEVICES=1 python bts_test.py arguments_test_eigen.txt
python ../utils/eval_with_pngs.py --pred_path vis_att_bts_eigen_v2_pytorch_att/raw/ --gt_path ./dataset/kitti_dataset/ --dataset kitti --min_depth_eval 1e-3 --max_depth_eval 80 --do_kb_crop --garg_crop

Debug

CUDA_VISIBLE_DEVICES=1 python bts_main.py arguments_train_nyu_debug.txt

Download Pretrained Model

sh scripts/download_TransDepth_model.sh kitti_depth

sh scripts/download_TransDepth_model.sh nyu_depth

sh scripts/download_TransDepth_model.sh nyu_surfacenormal

Reference

BTS

ViT

Do‘s code

Visualization result share

We provide all vis result of all tasks. link

Owner
stanley
stanley
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022