Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Overview

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Open in Streamlit Open In Colab

스크린샷 2021-07-04 오후 4 11 51

This project attempted to implement the paper Putting NeRF on a Diet (DietNeRF) in JAX/Flax. DietNeRF is designed for rendering quality novel views in few-shot learning scheme, a task that vanilla NeRF (Neural Radiance Field) struggles. To achieve this, the author coins Semantic Consistency Loss to supervise DietNeRF by prior knowledge from CLIP Vision Transformer. Such supervision enables DietNeRF to learn 3D scene reconstruction with CLIP's prior knowledge on 2D views.

Besides this repo, you can check our write-up and demo here:

🤩 Demo

  1. You can check out our demo in Hugging Face Space
  2. Or you can set up our Streamlit demo locally (model checkpoints will be fetched automatically upon startup)
pip install -r requirements_demo.txt
streamlit run app.py

Streamlit Demo

Implementation

Our code is written in JAX/ Flax and mainly based upon jaxnerf from Google Research. The base code is highly optimized in GPU & TPU. For semantic consistency loss, we utilize pretrained CLIP Vision Transformer from transformers library.

To learn more about DietNeRF, our experiments and implementation, you are highly recommended to check out our very detailed Notion write-up!

스크린샷 2021-07-04 오후 4 11 51

🤗 Hugging Face Model Hub Repo

You can also find our project and our model checkpoints on our Hugging Face Model Hub Repository. The models checkpoints are located in models folder.

Our JAX/Flax implementation currently supports:

Platform Single-Host GPU Multi-Device TPU
Type Single-Device Multi-Device Single-Host Multi-Host
Training Supported Supported Supported Supported
Evaluation Supported Supported Supported Supported

💻 Installation

# Clone the repo
git clone https://github.com/codestella/putting-nerf-on-a-diet
# Create a conda environment, note you can use python 3.6-3.8 as
# one of the dependencies (TensorFlow) hasn't supported python 3.9 yet.
conda create --name jaxnerf python=3.6.12; conda activate jaxnerf
# Prepare pip
conda install pip; pip install --upgrade pip
# Install requirements
pip install -r requirements.txt
# [Optional] Install GPU and TPU support for Jax
# Remember to change cuda101 to your CUDA version, e.g. cuda110 for CUDA 11.0.
!pip install --upgrade jax "jax[cuda110]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
# install flax and flax-transformer
pip install flax transformers[flax]

Dataset

Download the datasets from the NeRF official Google Drive. Please download the nerf_synthetic.zip and unzip them in the place you like. Let's assume they are placed under /tmp/jaxnerf/data/.

🤟 How to Train

  1. Train in our prepared Colab notebook: Colab Pro is recommended, otherwise you may encounter out-of-memory
  2. Train locally: set use_semantic_loss=true in your yaml configuration file to enable DietNeRF.
python -m train \
  --data_dir=/PATH/TO/YOUR/SCENE/DATA \ # (e.g. nerf_synthetic/lego)
  --train_dir=/PATH/TO/THE/PLACE/YOU/WANT/TO/SAVE/CHECKPOINTS \
  --config=configs/CONFIG_YOU_LIKE

💎 Experimental Results

Rendered Rendering images by 8-shot learned DietNeRF

DietNeRF has a strong capacity to generalise on novel and challenging views with EXTREMELY SMALL TRAINING SAMPLES!

HOTDOG / DRUM / SHIP / CHAIR / LEGO / MIC

Rendered GIF by occluded 14-shot learned NeRF and Diet-NeRF

We made artificial occlusion on the right side of image (Only picked left side training poses). The reconstruction quality can be compared with this experiment. DietNeRF shows better quality than Original NeRF when It is occluded.

Training poses

LEGO

Diet NeRF NeRF

SHIP

Diet NeRF NeRF

👨‍👧‍👦 Our Team

Teams Members
Project Managing Stella Yang To Watch Our Project Progress, Please Check Our Project Notion
NeRF Team Stella Yang, Alex Lau, Seunghyun Lee, Hyunkyu Kim, Haswanth Aekula, JaeYoung Chung
CLIP Team Seunghyun Lee, Sasikanth Kotti, Khalid Sifullah , Sunghyun Kim
Cloud TPU Team Alex Lau, Aswin Pyakurel, JaeYoung Chung, Sunghyun Kim

*Special mention to our "night owl" contributors 🦉 : Seunghyun Lee, Alex Lau, Stella Yang, Haswanth Aekula

💞 Social Impact

  • Game Industry
  • Augmented Reality Industry
  • Virtual Reality Industry
  • Graphics Industry
  • Online shopping
  • Metaverse
  • Digital Twin
  • Mapping / SLAM

🌱 References

This project is based on “JAX-NeRF”.

@software{jaxnerf2020github,
  author = {Boyang Deng and Jonathan T. Barron and Pratul P. Srinivasan},
  title = {{JaxNeRF}: an efficient {JAX} implementation of {NeRF}},
  url = {https://github.com/google-research/google-research/tree/master/jaxnerf},
  version = {0.0},
  year = {2020},
}

This project is based on “Putting NeRF on a Diet”.

@misc{jain2021putting,
      title={Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis}, 
      author={Ajay Jain and Matthew Tancik and Pieter Abbeel},
      year={2021},
      eprint={2104.00677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🔑 License

Apache License 2.0

❤️ Special Thanks

Our Project is motivated by HuggingFace X GoogleAI (JAX) Community Week Event 2021.

We would like to take this chance to thank Hugging Face for organizing such an amazing open-source initiative, Suraj and Patrick for all the technical help. We learn a lot throughout this wonderful experience!

스크린샷 2021-07-04 오후 4 11 51

Finally, we would like to thank Common Computer AI for sponsoring our team access to V100 multi-GPUs server. Thank you so much for your support!

스크린샷

Owner
Stella Seoyeon Yang's New Github Account for Research. Ph.D. Candidate Student in SNU, CV lab.
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023