Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Overview

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

YOLOv5 with alpha-IoU losses implemented in PyTorch.

Example results on the test set of PASCAL VOC 2007 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1 and 2), thus can detect more true positive objects (image 3 to 5) and fewer false positive objects (image 6 and 7).

Example results on the val set of MS COCO 2017 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1), thus can detect more true positive objects (image 2 to 5) and fewer false positive objects (image 4 to 7). Note that image 4 and 5 detect both more true positive and fewer false positive objects.

Citation

If you use our method, please consider citing:

@inproceedings{Jiabo_Alpha-IoU,
  author    = {He, Jiabo and Erfani, Sarah and Ma, Xingjun and Bailey, James and Chi, Ying and Hua, Xian-Sheng},
  title     = {Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression},
  booktitle = {NeurIPS},
  year      = {2021},
}

Modifications

This repository is a fork of ultralytics/yolov5, with an implementation of alpha-IoU losses while keeping the code as close to the original as possible.

Alpha-IoU Losses

Alpha-IoU losses can be configured in Line 131 of utils/loss.py, functionesd as 'bbox_alpha_iou'. The alpha values and types of losses (e.g., IoU, GIoU, DIoU, CIoU) can be selected in this function, which are defined in utils/general.py. Note that we should use a small constant epsilon to avoid torch.pow(0, alpha) or denominator=0.

Install

Python>=3.6.0 is required with all requirements.txt installed including PyTorch>=1.7:

$ git clone https://github.com/Jacobi93/Alpha-IoU
$ cd Alpha-IoU
$ pip install -r requirements.txt

Configurations

Configuration files can be found in data. We do not change either 'voc.yaml' or 'coco.yaml' used in the original repository. However, we could do more experiments. E.g.,

voc25.yaml # randomly use 25% PASCAL VOC as the training set
voc50.yaml # randomly use 50% PASCAL VOC as the training set

Code for generating different small training sets is in generate_small_sets.py. Code for generating different noisy labels is in generate_noisy_labels.py, and we should change the 'img2label_paths' function in utils/datasets.py accordingly.

Implementation Commands

For detailed installation instruction and network training options, please take a look at the README file or issue of ultralytics/yolov5. Following are sample commands we used for training and testing YOLOv5 with alpha-IoU, with more samples in instruction.txt.

python train.py --data voc.yaml --hyp hyp.scratch.yaml --cfg yolov5s.yaml --batch-size 64 --epochs 300 --device '0'
python test.py --data voc.yaml --img 640 --conf 0.001 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --device '0'
python detect.py --source ../VOC/images/detect500 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --conf 0.25

We can also randomly generate some images for detection and visualization results in generate_detect_images.py.

Pretrained Weights

Here are some pretrained models using the configurations in this repository, with alpha=3 in all experiments. Details of these pretrained models can be found in runs/train. All results are tested using 'weights/best.pt' for each experiment. It is a very simple yet effective method so that people is able to quickly apply our method to existing models following the 'bbox_alpha_iou' function in utils/general.py. Note that YOLOv5 has been updated for many versions and all pretrained models in this repository are obtained based on the YOLOv5 version 4.0, where details of all versions for YOLOv5 can be found. Researchers are also welcome to apply our method to other object detection models, e.g., Faster R-CNN, DETR, etc.

Owner
Jacobi(Jiabo He)
Jacobi(Jiabo He)
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022