Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Overview

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

arXiv

This is the code base for weakly supervised NER.

We provide a three stage framework:

  • Stage I: Domain continual pre-training;
  • Stage II: Noise-aware weakly supervised pre-training;
  • Stage III: Fine-tuning.

In this code base, we actually provide basic building blocks which allow arbitrary combination of different stages. We also provide examples scripts for reproducing our results in BioMedical NER.

See details in arXiv.

Performance Benchmark

BioMedical NER

Method (F1) BC5CDR-chem BC5CDR-disease NCBI-disease
BERT 89.99 79.92 85.87
bioBERT 92.85 84.70 89.13
PubMedBERT 93.33 85.62 87.82
Ours 94.17 90.69 92.28

See more in bio_script/README.md

Dependency

pytorch==1.6.0
transformers==3.3.1
allennlp==1.1.0
flashtool==0.0.10
ray==0.8.7

Install requirements

pip install -r requirements.txt

(If the allennlp and transformers are incompatible, install allennlp first and then update transformers. Since we only use some small functions of allennlp, it should works fine. )

File Structure:

├── bert-ner          #  Python Code for Training NER models
│   └── ...
└── bio_script        #  Shell Scripts for Training BioMedical NER models
    └── ...

Usage

See examples in bio_script

Hyperparameter Explaination

Here we explain hyperparameters used the scripts in ./bio_script.

Training Scripts:

Scripts

  • roberta_mlm_pretrain.sh
  • weak_weighted_selftrain.sh
  • finetune.sh

Hyperparameter

  • GPUID: Choose the GPU for training. It can also be specified by xxx.sh 0,1,2,3.
  • MASTER_PORT: automatically constructed (avoid conflicts) for distributed training.
  • DISTRIBUTE_GPU: use distributed training or not
  • PROJECT_ROOT: automatically detected, the root path of the project folder.
  • DATA_DIR: Directory of the training data, where it contains train.txt test.txt dev.txt labels.txt weak_train.txt (weak data) aug_train.txt (optional).
  • USE_DA: if augment training data by augmentation, i.e., combine train.txt + aug_train.txt in DATA_DIR for training.
  • BERT_MODEL: the model backbone, e.g., roberta-large. See transformers for details.
  • BERT_CKP: see BERT_MODEL_PATH.
  • BERT_MODEL_PATH: the path of the model checkpoint that you want to load as the initialization. Usually used with BERT_CKP.
  • LOSSFUNC: nll the normal loss function, corrected_nll noise-aware risk (i.e., add weighted log-unlikelihood regularization: wei*nll + (1-wei)*null ).
  • MAX_WEIGHT: The maximum weight of a sample in the loss.
  • MAX_LENGTH: max sentence length.
  • BATCH_SIZE: batch size per GPU.
  • NUM_EPOCHS: number of training epoches.
  • LR: learning rate.
  • WARMUP: learning rate warmup steps.
  • SAVE_STEPS: the frequency of saving models.
  • EVAL_STEPS: the frequency of testing on validation.
  • SEED: radnom seed.
  • OUTPUT_DIR: the directory for saving model and code. Some parameters will be automatically appended to the path.
    • roberta_mlm_pretrain.sh: It's better to manually check where you want to save the model.]
    • finetune.sh: It will be save in ${BERT_MODEL_PATH}/finetune_xxxx.
    • weak_weighted_selftrain.sh: It will be save in ${BERT_MODEL_PATH}/selftrain/${FBA_RULE}_xxxx (see FBA_RULE below)

There are some addition parameters need to be set for weakly supervised learning (weak_weighted_selftrain.sh).

Profiling Script

Scripts

  • profile.sh

Profiling scripts also use the same entry as the training script: bert-ner/run_ner.py but only do evaluation.

Hyperparameter Basically the same as training script.

  • PROFILE_FILE: can be train,dev,test or a specific path to a txt data. E.g., using Weak by

    PROFILE_FILE=weak_train_100.txt PROFILE_FILE=$DATA_DIR/$PROFILE_FILE

  • OUTPUT_DIR: It will be saved in OUTPUT_DIR=${BERT_MODEL_PATH}/predict/profile

Weakly Supervised Data Refinement Script

Scripts

  • profile2refinedweakdata.sh

Hyperparameter

  • BERT_CKP: see BERT_MODEL_PATH.
  • BERT_MODEL_PATH: the path of the model checkpoint that you want to load as the initialization. Usually used with BERT_CKP.
  • WEI_RULE: rule for generating weight for each weak sample.
    • uni: all are 1
    • avgaccu: confidence estimate for new labels generated by all_overwrite
    • avgaccu_weak_non_O_promote: confidence estimate for new labels generated by non_O_overwrite
  • PRED_RULE: rule for generating new weak labels.
    • non_O_overwrite: non-entity ('O') is overwrited by prediction
    • all_overwrite: all use prediction, i.e., self-training
    • no: use original weak labels
    • non_O_overwrite_all_overwrite_over_accu_xx: non_O_overwrite + if confidence is higher than xx all tokens use prediction as new labels

The generated data will be saved in ${BERT_MODEL_PATH}/predict/weak_${PRED_RULE}-WEI_${WEI_RULE} WEAK_RULE specified in weak_weighted_selftrain.sh is essential the name of folder weak_${PRED_RULE}-WEI_${WEI_RULE}.

More Rounds of Training, Try Different Combination

  1. To do training with weakly supervised data from any model checkpoint directory:
  • i) Set BERT_CKP appropriately;
  • ii) Create profile data, e.g., run ./bio_script/profile.sh for dev set and weak set
  • iii) Generate data with weak labels from profile data, e.g., run ./bio_script/profile2refinedweakdata.sh. You can use different rules to generate weights for each sample (WEI_RULE) and different rules to refine weak labels (PRED_RULE). See more details in ./ber-ner/profile2refinedweakdata.py
  • iv) Do training with ./bio_script/weak_weighted_selftrain.sh.
  1. To do fine-tuning with human labeled data from any model checkpoint directory:
  • i) Set BERT_CKP appropriately;
  • ii) Run ./bio_script/finetune.sh.

Reference

@inproceedings{Jiang2021NamedER,
  title={Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data},
  author={Haoming Jiang and Danqing Zhang and Tianyue Cao and Bing Yin and T. Zhao},
  booktitle={ACL/IJCNLP},
  year={2021}
}

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

Owner
Amazon
Amazon
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022