Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Overview

Simple-Image-Classification

Simple Image Classification Code (PyTorch)

Yechan Kim

This repository contains:

  • Python3 / Pytorch code for multi-class image classification

Prerequisites

  • See requirements.txt for details.
torch
torchvision
matplotlib
scikit-learn
tqdm            # not mandatory but recommended
tensorboard     # not mandatory but recommended

How to use

  1. The directory structure of your dataset should be as follows. (You can use our toy-examples: unzip cifar10_dummy.zip.)
|β€”β€” πŸ“ your_own_dataset
	|β€”β€” πŸ“ train
		|β€”β€” πŸ“ class_1
			|β€”β€” πŸ–ΌοΈ 1.jpg
			|β€”β€” ...
		|β€”β€” πŸ“ class_2 
			|β€”β€” πŸ–ΌοΈ ...
	|β€”β€” πŸ“ valid
		|β€”β€” πŸ“ class_1
		|β€”β€” πŸ“ ... 
	|β€”β€” πŸ“ test
		|β€”β€” πŸ“ class_1
		|β€”β€” πŸ“ ... 
  1. Check __init__.py. You might need to modify variables and add somethings (transformation, optimizer, lr_schduler ...). πŸ’ Tip You can add your own loss function as follows:
...
def get_loss_function(loss_function_name, device):
    ... 
    elif loss_function_name == 'your_own_function_name':  # add +
        return your_own_function()
    ...
...
  1. Run train.py for training. The below is an example. See src/my_utils/parser.py for details. πŸ’ Tip --loss_function='CE' means that you choose softmax-cross-entropy (default) for your loss.
python train.py --network_name='resnet34_for_tiny' --dataset_dir='./cifar10_dummy' \
--batch_size=256 --epochs=5  \
--lr=0.1 --lr_step='[60, 120, 160]' --lr_step_gamma=0.5 --lr_warmup_epochs=5 \
--auto_mean_std --store_weights --store_loss_acc_log --store_logits --store_confusion_matrix \
--loss_function='your_own_function_name' --transform_list_name='CIFAR' --tag='train-001'
  1. Run test.py for test. The below is an example. See src/my_utils/parser.py for details.
python test.py --network_name='resnet34_for_tiny' --dataset_dir='./cifar10_dummy' \
--auto_mean_std --store_logits --store_confusion_matrix \
--checkpoint='pretrained_model_weights.pt'

Trailer

  1. If you install tqdm, you can check the progress of training. readme1

  2. If you install tensorboard, you can check the acc/loss changes and confusion matrices during training. readme1

Contribution

πŸ› If you find any bugs or have opinions for further improvements, feel free to contact me ([email protected]). All contributions are welcome.

Reference

  1. https://github.com/weiaicunzai/pytorch-cifar100
  2. https://medium.com/@djin31/how-to-plot-wholesome-confusion-matrix-40134fd402a8 (Confusion Matrix)
  3. https://pytorch.org/ignite/generated/ignite.handlers.param_scheduler.create_lr_scheduler_with_warmup.html
Owner
Yechan Kim
GIST, Machine Learning and Vision Lab.
Yechan Kim
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022