SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

Overview

SSL_SLAM2

Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example)

This repo is an extension work of SSL_SLAM. Similar to RTABMAP, SSL_SLAM2 separates the mapping module and localization module. Map saving and map optimization is enabled in the mapping unit. Map loading and localization is enabled in the localziation unit.

This code is an implementation of paper "Lightweight 3-D Localization and Mapping for Solid-State LiDAR", published in IEEE Robotics and Automation Letters, 2021 paper

A summary video demo can be found at Video

Modifier: Wang Han, Nanyang Technological University, Singapore

Running speed: 20 Hz on Intel NUC, 30 Hz on PC

1. Solid-State Lidar Sensor Example

1.1 Scene reconstruction example

1.2 Localization with built map

1.3 Comparison

2. Prerequisites

2.1 Ubuntu and ROS

Ubuntu 64-bit 18.04.

ROS Melodic. ROS Installation

2.2. Ceres Solver

Follow Ceres Installation.

2.3. PCL

Follow PCL Installation.

Tested with 1.8.1

2.4. GTSAM

Follow GTSAM Installation.

2.5. Trajectory visualization

For visualization purpose, this package uses hector trajectory sever, you may install the package by

sudo apt-get install ros-melodic-hector-trajectory-server

Alternatively, you may remove the hector trajectory server node if trajectory visualization is not needed

3. Sensor Setup

If you have new Realsense L515 sensor, you may follow the below setup instructions

3.1 L515

3.2 Librealsense

Follow Librealsense Installation

3.3 Realsense_ros

Copy realsense_ros package to your catkin folder

    cd ~/catkin_ws/src
    git clone https://github.com/IntelRealSense/realsense-ros.git
    cd ..
    catkin_make

4. Build SSL_SLAM2

4.1 Clone repository:

    cd ~/catkin_ws/src
    git clone https://github.com/wh200720041/ssl_slam2.git
    cd ..
    catkin_make
    source ~/catkin_ws/devel/setup.bash

4.2 Download test rosbag

You may download our recorded data: MappingTest.bag (3G) and LocalizationTest.bag (6G)if you dont have realsense L515, and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LocalizationTest.zip
unzip MappingTest.zip

4.3 Map Building

map optimization and building

    roslaunch ssl_slam2 ssl_slam2_mapping.launch

The map optimization is performed based on loop closure, you have to specify the loop clousre manually in order to trigger global optimization. To save map, open a new terminal and

  rosservice call /save_map

Upon calling the serviece, the map will be automatically saved. It is recommended to have a loop closure to reduce the drifts. Once the service is called, loop closure will be checked. For example, in the rosbag provided, the loop closure appears at frame 1060-1120, thus, when you see "total_frame 1070" or "total_frame 1110" you may immediately type

  rosservice call /save_map

Since the current frame is between 1060 and 1120, the loop closure will be triggered automatically and the global map will be optimized and saved

4.4 Localization

Type

    roslaunch ssl_slam2 ssl_slam2_localization.launch

If your map is large, it may takes a while to load

4.5 Parameters Explanation

The map size depends on number of keyframes used. The more keyframes used for map buildin, the larger map will be.

min_map_update_distance: distance threshold to add a keyframe. higher means lower update rate. min_map_update_angle: angle threshold to add a keyframe. higher means lower update rate. min_map_update_frame: time threshold to add a keyframe. higher means lower update rate.

4.6 Relocalization

The relocalization module under tracking loss is still under development. You must specify the robot init pose w.r.t. the map coordinate if the starting position is not the origin of map. You can set this by

    <param name="offset_x" type="double" value="0.0" />
    <param name="offset_y" type="double" value="0.0" />
    <param name="offset_yaw" type="double" value="0.0" />

4.7 Running speed

The realsense is running at 30Hz and some computer may not be able to support such high processing rate. You may reduce the processing rate by skipping frames. You can do thid by setting the

<param name="skip_frames" type="int" value="1" />

1 implies no skip frames, i.e., 30Hz; implies skip 1 frames, i.e., 15Hz. For small map building, you can do it online. however, it is recommended to record a rosbag and build map offline for large mapping since the dense map cannot be generated in real-time.

5 Map Building with multiple loop closure places

5.1 Dataset

You may download a larger dataset LargeMappingTest.bag (10G), and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LargeMappingTest.zip

5.2 Map Building

Two loop closure places appear at frame 0-1260 and 1270-3630, i.e., frame 0 and frame 1260 are the same place, frame 1270 adn 3630 are the same place. Run

    roslaunch ssl_slam2 ssl_slam2_large_mapping.launch

open a new terminal, when you see "total_frame 1260", immediately type

  rosservice call /save_map

when you see "total_frame 3630", immediately type again

  rosservice call /save_map

6. Citation

If you use this work for your research, you may want to cite the paper below, your citation will be appreciated

@article{wang2021lightweight,
  author={H. {Wang} and C. {Wang} and L. {Xie}},
  journal={IEEE Robotics and Automation Letters}, 
  title={Lightweight 3-D Localization and Mapping for Solid-State LiDAR}, 
  year={2021},
  volume={6},
  number={2},
  pages={1801-1807},
  doi={10.1109/LRA.2021.3060392}}
Owner
Wang Han 王晗
I am currently a Phd Candidate at Nanyang Technological University, Singapore, specialize in computer vision and robotics
Wang Han 王晗
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022