SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

Overview

SSL_SLAM2

Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example)

This repo is an extension work of SSL_SLAM. Similar to RTABMAP, SSL_SLAM2 separates the mapping module and localization module. Map saving and map optimization is enabled in the mapping unit. Map loading and localization is enabled in the localziation unit.

This code is an implementation of paper "Lightweight 3-D Localization and Mapping for Solid-State LiDAR", published in IEEE Robotics and Automation Letters, 2021 paper

A summary video demo can be found at Video

Modifier: Wang Han, Nanyang Technological University, Singapore

Running speed: 20 Hz on Intel NUC, 30 Hz on PC

1. Solid-State Lidar Sensor Example

1.1 Scene reconstruction example

1.2 Localization with built map

1.3 Comparison

2. Prerequisites

2.1 Ubuntu and ROS

Ubuntu 64-bit 18.04.

ROS Melodic. ROS Installation

2.2. Ceres Solver

Follow Ceres Installation.

2.3. PCL

Follow PCL Installation.

Tested with 1.8.1

2.4. GTSAM

Follow GTSAM Installation.

2.5. Trajectory visualization

For visualization purpose, this package uses hector trajectory sever, you may install the package by

sudo apt-get install ros-melodic-hector-trajectory-server

Alternatively, you may remove the hector trajectory server node if trajectory visualization is not needed

3. Sensor Setup

If you have new Realsense L515 sensor, you may follow the below setup instructions

3.1 L515

3.2 Librealsense

Follow Librealsense Installation

3.3 Realsense_ros

Copy realsense_ros package to your catkin folder

    cd ~/catkin_ws/src
    git clone https://github.com/IntelRealSense/realsense-ros.git
    cd ..
    catkin_make

4. Build SSL_SLAM2

4.1 Clone repository:

    cd ~/catkin_ws/src
    git clone https://github.com/wh200720041/ssl_slam2.git
    cd ..
    catkin_make
    source ~/catkin_ws/devel/setup.bash

4.2 Download test rosbag

You may download our recorded data: MappingTest.bag (3G) and LocalizationTest.bag (6G)if you dont have realsense L515, and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LocalizationTest.zip
unzip MappingTest.zip

4.3 Map Building

map optimization and building

    roslaunch ssl_slam2 ssl_slam2_mapping.launch

The map optimization is performed based on loop closure, you have to specify the loop clousre manually in order to trigger global optimization. To save map, open a new terminal and

  rosservice call /save_map

Upon calling the serviece, the map will be automatically saved. It is recommended to have a loop closure to reduce the drifts. Once the service is called, loop closure will be checked. For example, in the rosbag provided, the loop closure appears at frame 1060-1120, thus, when you see "total_frame 1070" or "total_frame 1110" you may immediately type

  rosservice call /save_map

Since the current frame is between 1060 and 1120, the loop closure will be triggered automatically and the global map will be optimized and saved

4.4 Localization

Type

    roslaunch ssl_slam2 ssl_slam2_localization.launch

If your map is large, it may takes a while to load

4.5 Parameters Explanation

The map size depends on number of keyframes used. The more keyframes used for map buildin, the larger map will be.

min_map_update_distance: distance threshold to add a keyframe. higher means lower update rate. min_map_update_angle: angle threshold to add a keyframe. higher means lower update rate. min_map_update_frame: time threshold to add a keyframe. higher means lower update rate.

4.6 Relocalization

The relocalization module under tracking loss is still under development. You must specify the robot init pose w.r.t. the map coordinate if the starting position is not the origin of map. You can set this by

    <param name="offset_x" type="double" value="0.0" />
    <param name="offset_y" type="double" value="0.0" />
    <param name="offset_yaw" type="double" value="0.0" />

4.7 Running speed

The realsense is running at 30Hz and some computer may not be able to support such high processing rate. You may reduce the processing rate by skipping frames. You can do thid by setting the

<param name="skip_frames" type="int" value="1" />

1 implies no skip frames, i.e., 30Hz; implies skip 1 frames, i.e., 15Hz. For small map building, you can do it online. however, it is recommended to record a rosbag and build map offline for large mapping since the dense map cannot be generated in real-time.

5 Map Building with multiple loop closure places

5.1 Dataset

You may download a larger dataset LargeMappingTest.bag (10G), and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LargeMappingTest.zip

5.2 Map Building

Two loop closure places appear at frame 0-1260 and 1270-3630, i.e., frame 0 and frame 1260 are the same place, frame 1270 adn 3630 are the same place. Run

    roslaunch ssl_slam2 ssl_slam2_large_mapping.launch

open a new terminal, when you see "total_frame 1260", immediately type

  rosservice call /save_map

when you see "total_frame 3630", immediately type again

  rosservice call /save_map

6. Citation

If you use this work for your research, you may want to cite the paper below, your citation will be appreciated

@article{wang2021lightweight,
  author={H. {Wang} and C. {Wang} and L. {Xie}},
  journal={IEEE Robotics and Automation Letters}, 
  title={Lightweight 3-D Localization and Mapping for Solid-State LiDAR}, 
  year={2021},
  volume={6},
  number={2},
  pages={1801-1807},
  doi={10.1109/LRA.2021.3060392}}
Owner
Wang Han 王晗
I am currently a Phd Candidate at Nanyang Technological University, Singapore, specialize in computer vision and robotics
Wang Han 王晗
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022