E2VID_ROS - E2VID_ROS: E2VID to a real-time system

Overview

E2VID_ROS

Introduce

We extend E2VID to a real-time system. Because Python ROS callback has a large delay, we use dvs_event_server to transport "dvs/events" ROS topic to Python.

Install with Anaconda

In addition to dependencies E2VID needs, some packages are needed. Enter the E2VID conda environment, and then

pip install rospkg
pip install pyzmq
pip install protobuf

Usage

Adjust the event camera parameter according to your camera and surroundings in run_reconstruction_ros.py

self.width = 346
self.height = 260
self.event_window_size = 30000

Adjust the event topic name and the event window size in dvs_event_server.launch

<param name="/event_topic_name" type="str" value="/dvs/events"/>
<param name="/event_window_size" type="int" value="30000" />

Make sure the ip address and the port are the same as the dvs_event_server.launch in run_reconstruction_ros.py

self.socket.connect('tcp://127.0.0.1:10001')
<param name="/ip_address" type="str" value="127.0.0.1" />
<param name="/port" type="str" value="10001" />

First run dvs_event_server

roslaunch dvs_event_server dvs_event_server.launch

And then run E2VID_ROS (when closing, run_reconstruction_ros.py should be closed before dvs_event_server)

python run_reconstruction_ros.py

You can play the rosbag or use your own camera

rosbag play example.bag

You can use dvs_renderer or dv_ros to compare the reconstructed frame with the event frame.

You can use rqt_image_view or rviz to visualize the /e2vid/image topic




High Speed and High Dynamic Range Video with an Event Camera

High Speed and High Dynamic Range Video with an Event Camera

This is the code for the paper High Speed and High Dynamic Range Video with an Event Camera by Henri Rebecq, Rene Ranftl, Vladlen Koltun and Davide Scaramuzza:

You can find a pdf of the paper here. If you use any of this code, please cite the following publications:

@Article{Rebecq19pami,
  author        = {Henri Rebecq and Ren{\'{e}} Ranftl and Vladlen Koltun and Davide Scaramuzza},
  title         = {High Speed and High Dynamic Range Video with an Event Camera},
  journal       = {{IEEE} Trans. Pattern Anal. Mach. Intell. (T-PAMI)},
  url           = {http://rpg.ifi.uzh.ch/docs/TPAMI19_Rebecq.pdf},
  year          = 2019
}
@Article{Rebecq19cvpr,
  author        = {Henri Rebecq and Ren{\'{e}} Ranftl and Vladlen Koltun and Davide Scaramuzza},
  title         = {Events-to-Video: Bringing Modern Computer Vision to Event Cameras},
  journal       = {{IEEE} Conf. Comput. Vis. Pattern Recog. (CVPR)},
  year          = 2019
}

Install

Dependencies:

Install with Anaconda

The installation requires Anaconda3. You can create a new Anaconda environment with the required dependencies as follows (make sure to adapt the CUDA toolkit version according to your setup):

conda create -n E2VID
conda activate E2VID
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
conda install pandas
conda install -c conda-forge opencv

Run

  • Download the pretrained model:
wget "http://rpg.ifi.uzh.ch/data/E2VID/models/E2VID_lightweight.pth.tar" -O pretrained/E2VID_lightweight.pth.tar
  • Download an example file with event data:
wget "http://rpg.ifi.uzh.ch/data/E2VID/datasets/ECD_IJRR17/dynamic_6dof.zip" -O data/dynamic_6dof.zip

Before running the reconstruction, make sure the conda environment is sourced:

conda activate E2VID
  • Run reconstruction:
python run_reconstruction.py \
  -c pretrained/E2VID_lightweight.pth.tar \
  -i data/dynamic_6dof.zip \
  --auto_hdr \
  --display \
  --show_events

Parameters

Below is a description of the most important parameters:

Main parameters

  • --window_size / -N (default: None) Number of events per window. This is the parameter that has the most influence of the image reconstruction quality. If set to None, this number will be automatically computed based on the sensor size, as N = width * height * num_events_per_pixel (see description of that parameter below). Ignored if --fixed_duration is set.
  • --fixed_duration (default: False) If True, will use windows of events with a fixed duration (i.e. a fixed output frame rate).
  • --window_duration / -T (default: 33 ms) Duration of each event window, in milliseconds. The value of this parameter has strong influence on the image reconstruction quality. Its value may need to be adapted to the dynamics of the scene. Ignored if --fixed_duration is not set.
  • --Imin (default: 0.0), --Imax (default: 1.0): linear tone mapping is performed by normalizing the output image as follows: I = (I - Imin) / (Imax - Imin). If --auto_hdr is set to True, --Imin and --Imax will be automatically computed as the min (resp. max) intensity values.
  • --auto_hdr (default: False) Automatically compute --Imin and --Imax. Disabled when --color is set.
  • --color (default: False): if True, will perform color reconstruction as described in the paper. Only use this with a color event camera such as the Color DAVIS346.

Output parameters

  • --output_folder: path of the output folder. If not set, the image reconstructions will not be saved to disk.
  • --dataset_name: name of the output folder directory (default: 'reconstruction').

Display parameters

  • --display (default: False): display the video reconstruction in real-time in an OpenCV window.
  • --show_events (default: False): show the input events side-by-side with the reconstruction. If --output_folder is set, the previews will also be saved to disk in /path/to/output/folder/events.

Additional parameters

  • --num_events_per_pixel (default: 0.35): Parameter used to automatically estimate the window size based on the sensor size. The value of 0.35 was chosen to correspond to ~ 15,000 events on a 240x180 sensor such as the DAVIS240C.
  • --no-normalize (default: False): Disable event tensor normalization: this will improve speed a bit, but might degrade the image quality a bit.
  • --no-recurrent (default: False): Disable the recurrent connection (i.e. do not maintain a state). For experimenting only, the results will be flickering a lot.
  • --hot_pixels_file (default: None): Path to a file specifying the locations of hot pixels (such a file can be obtained with this tool for example). These pixels will be ignored (i.e. zeroed out in the event tensors).

Example datasets

We provide a list of example (publicly available) event datasets to get started with E2VID.

Working with ROS

Because PyTorch recommends Python 3 and ROS is only compatible with Python2, it is not straightforward to have the PyTorch reconstruction code and ROS code running in the same environment. To make things easy, the reconstruction code we provide has no dependency on ROS, and simply read events from a text file or ZIP file. We provide convenience functions to convert ROS bags (a popular format for event datasets) into event text files. In addition, we also provide scripts to convert a folder containing image reconstructions back to a rosbag (or to append image reconstructions to an existing rosbag).

Note: it is not necessary to have a sourced conda environment to run the following scripts. However, ROS needs to be installed and sourced.

rosbag -> events.txt

To extract the events from a rosbag to a zip file containing the event data:

python scripts/extract_events_from_rosbag.py /path/to/rosbag.bag \
  --output_folder=/path/to/output/folder \
  --event_topic=/dvs/events

image reconstruction folder -> rosbag

python scripts/image_folder_to_rosbag.py \
  --datasets dynamic_6dof \
  --image_folder /path/to/image/folder \
  --output_folder /path/to/output_folder \
  --image_topic /dvs/image_reconstructed

Append image_reconstruction_folder to an existing rosbag

cd scripts
python embed_reconstructed_images_in_rosbag.py \
  --rosbag_folder /path/to/rosbag/folder \
  --datasets dynamic_6dof \
  --image_folder /path/to/image/folder \
  --output_folder /path/to/output_folder \
  --image_topic /dvs/image_reconstructed

Generating a video reconstruction (with a fixed framerate)

It can be convenient to convert an image folder to a video with a fixed framerate (for example for use in a video editing tool). You can proceed as follows:

export FRAMERATE=30
python resample_reconstructions.py -i /path/to/input_folder -o /tmp/resampled -r $FRAMERATE
ffmpeg -framerate $FRAMERATE -i /tmp/resampled/frame_%010d.png video_"$FRAMERATE"Hz.mp4

Acknowledgements

This code borrows from the following open source projects, whom we would like to thank:

Owner
Robin Shaun
Aerospace Engineering
Robin Shaun
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022