Run object detection model on the Raspberry Pi

Overview

Intro

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

This is the guide for installing TensorFlow Lite on the Raspberry Pi and running pre-trained object detection models on it.

Step 1. Setting up Rasperry Pi

Upgrade Raspbian Stretch to Buster

(If you on Buster, skip this step and simply run sudo apt-get update and sudo apt-get dist-upgrade)

$ sudo apt-get update && sudo apt-get upgrade -y

Verify nothing is wrong. Verify no errors are reported after each command. Fix as required (you’re on your own here!).

$ dpkg -C
$ apt-mark showhold

Prepare apt-get Sources

Update the sources to apt-get. This replaces “stretch” with “buster” in the repository locations giving apt-get access to the new version’s binaries.

$ sudo sed -i 's/stretch/buster/g' /etc/apt/sources.list    
$ sudo sed -i 's/stretch/buster/g' /etc/apt/sources.list.d/raspi.list

Verify this caught them all by running the following, expecting no output. If the command returns anything having previously run the sed commands above, it means more files may need tweaking. Run the sed command for each. The aim is to replace all instances of “stretch”.

$ grep -lnr stretch /etc/apt

Speed up subsequent steps by removing the list change package.

$ sudo apt-get remove apt-listchanges

Do the Upgrade

To update existing packages without updating kernel modules or removing packages, run the following.

$ sudo apt-get update && sudo apt-get upgrade -y

Alternatively, to include kernel modules and removing packages if required, run the following

$ sudo apt-get update && sudo apt-get full-upgrade -y

Cleanup old outdated packages.

$ sudo apt-get autoremove -y && sudo apt-get autoclean

Verify with

 cat /etc/os-release.

Update Firmware

$ sudo rpi-update

and

sudo apt-get install -y python3-pip

and

pip3 install --upgrade setuptools

2. Making sure camera interface is enabled in the Raspberry Pi Configuration menu

Click the Pi icon in the top left corner of the screen, select Preferences -> Raspberry Pi Configuration, and go to the Interfaces tab and verify Camera is set to Enabled. If it isn't, enable it now, and reboot the Raspberry Pi.

Converting Tensorflow to Tensorflow Lite

Using TensorFlow Lite converter. It takes TensorFlow model and generates a TensorFlow Lite model (an optimized FlatBuffer format identified by the .tflite file extension).

Step 2. Install TF Lite dependecies and set up virtual environment

clone this repo

git clone https://github.com/yanovsk/Raspberry-Pi-TF-Lite-Object-Detection

rename the folder to "tfliteod"

mv Raspberry-Pi-TF-Lite-Object-Detection tfliteod
cd tfliteod

run shell script to install get_pi_requirements

bash get_pi_req.sh

Note: shell script will auto install the lastest version of Tensorflow. To install specific version of TF, run pip3 install tensorflow==x.xx (where x.xx stands for the version you want to install)

Set up virtual environment

Install vitrtualenv

pip3 install virtualenv 

Then, create the "tfliteod-env" virtual environment by issuing:

python3 -m venv tfliteod-env

This will create a folder called tfliteod-env inside the tflite1 directory. The tfliteod-env folder will hold all the package libraries for this environment. Next, activate the environment by issuing:

source tfliteod-env/bin/activate

Step 3. Set up TensorFlow Lite detection model

Once, tensorflow is install we can proceed to seting up the object detection model.

We can use either pre-trained model or train it on our end. For the simplicity sake let's use pre-trained sample model by google

Download the sample model (also could be done thru direct link here)

wget https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip

upzip it

unzip coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -d Sample_model

Step 4. Run the model

Note: the model should work on either Picamera module or any other webcam plugged in to the Raspberry Pi as a usb device.

From home/pi/tfliteod run the following command:

python3 TFL_object_detection.py --modeldir=Sample_model

After initializing webcam window should pop-up on your Raspebbery Pi and object detection should work.

Note: this model can recongnize only 80 common objects (check labels.txt for more info on metadata)

However, you can custom train the model using this guide.

Happy hacking!

Owner
Dimitri Yanovsky
Dimitri Yanovsky
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

Hust Visual Learning Team 253 Dec 21, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022