Goal of the project : Detecting Temporal Boundaries in Sign Language videos

Overview

MVA RecVis course final project :

Goal of the project : Detecting Temporal Boundaries in Sign Language videos.

Sign language automatic indexing is an important challenge to develop better communication tools for the deaf community. However, annotated datasets for sign langage are limited, and there are few people with skills to anotate such data, which makes it hard to train performant machine learning models. An important challenge is therefore to :

  • Increase available training datasets.
  • Make labeling easier for professionnals to reduce risks of bad annotations.

In this context, techniques have emerged to perform automatic sign segmentation in videos, by marking the boundaries between individual signs in sign language videos. The developpment of such tools offers the potential to alleviate the limited supply of labelled dataset currently available for sign research.

demo

Previous work and personal contribution :

This repository provides code for the Object Recognition & Computer Vision (RecVis) course Final project. For more details please refer the the project report report.pdf. In this project, we reproduced the results obtained on the following paper (by using the code from this repository) :

We used the pre-extracted frame-level features obtained by applying the I3D model on videos to retrain the MS-TCN architecture for frame-level binary classification and reproduce the papers results. The tests folder proposes a notebook for reproducing the original paper results, with a meanF1B = 68.68 on the evaluation set of the BSL Corpus.

We further implemented new models in order to improve this result. We wanted to try attention based models as they have received recently a huge gain of interest in the vision research community. We first tried to train a Vanilla Transformer Encoder from scratch, but the results were not satisfactory.

  • Attention Is All You Need, Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin: (2018).

We then implemented the ASFormer model (Transformer for Action Segementation), using this code : a hybrid transformer model using some interesting ideas from the MS-TCN architecture. The motivations behind the model and its architecture are detailed in the following paper :

We trained this model on the I3D extracted features and obtained an improvement over the MS-TCN architecture. The results are given in the following table :

ID Model mF1B mF1S
1 MS-TCN 68.68±0.6 47.71±0.8
2 Transformer Encoder 60.28±0.3 42.70±0.2
3 ASFormer 69.79±0.2 49.23±1.2

Contents

Setup

# Clone this repository
git clone https://github.com/loubnabnl/Sign-Segmentation-with-Transformers.git
cd Sign-Segmentation-with-Transformers/
# Create signseg_env environment
conda env create -f environment.yml
conda activate signseg_env

Data and models

You can download the pretrained models (I3D and MS-TCN) (models.zip [302MB]) and data (data.zip [5.5GB]) used in the experiments here or by executing download/download_*.sh. The unzipped data/ and models/ folders should be located on the root directory of the repository (for using the demo downloading the models folder is sufficient).

You can download our best pretrained ASFormer model weights here.

Data:

Please cite the original datasets when using the data: BSL Corpus The authors of github.com/RenzKa/sign-segmentation provided the pre-extracted features and metadata. See here for a detailed description of the data files.

  • Features: data/features/*/*/features.mat
  • Metadata: data/info/*/info.pkl

Models:

  • I3D weights, trained for sign classification: models/i3d/*.pth.tar
  • MS-TCN weights for the demo (see tables below for links to the other models): models/ms-tcn/*.model
  • As_former weights of our best model : models/asformer/*.model

The folder structure should be as below:

sign-segmentation/models/
  i3d/
    i3d_kinetics_bslcp.pth.tar
  ms-tcn/
    mstcn_bslcp_i3d_bslcp.model
  asformer/
    best_asformer_bslcp.model

Demo

The demo folder contains a sample script to estimate the segments of a given sign language video, one can run demo.pyto get a visualization on a sample video.

cd demo
python demo.py

The demo will:

  1. use the models/i3d/i3d_kinetics_bslcp.pth.tar pretrained I3D model to extract features,
  2. use the models/asformer/best_asformer_model.model pretrained ASFormer model to predict the segments out of the features.
  3. save results.

Training

To train I3D please refer to github.com/RenzKa/sign-segmentation. To train ASFormer on the pre-extracted I3D features run main.py, you can change hyperparameters in the arguments inside the file. Or you can run the notebook in the folder test_asformer.

Citation

If you use this code and data, please cite the original papers following:

@inproceedings{Renz2021signsegmentation_a,
    author       = "Katrin Renz and Nicolaj C. Stache and Samuel Albanie and G{\"u}l Varol",
    title        = "Sign Language Segmentation with Temporal Convolutional Networks",
    booktitle    = "ICASSP",
    year         = "2021",
}
@article{yi2021asformer,
  title={Asformer: Transformer for action segmentation},
  author={Yi, Fangqiu and Wen, Hongyu and Jiang, Tingting},
  journal={arXiv preprint arXiv:2110.08568},
  year={2021}
}

License

The license in this repository only covers the code. For data.zip and models.zip we refer to the terms of conditions of original datasets.

Acknowledgements

The code builds on the github.com/RenzKa/sign-segmentation and github.com/ChinaYi/ASFormer repositories.

Owner
Loubna Ben Allal
MVA (Mathematics, Vision, Learning) student at ENS Paris Saclay.
Loubna Ben Allal
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022