Goal of the project : Detecting Temporal Boundaries in Sign Language videos

Overview

MVA RecVis course final project :

Goal of the project : Detecting Temporal Boundaries in Sign Language videos.

Sign language automatic indexing is an important challenge to develop better communication tools for the deaf community. However, annotated datasets for sign langage are limited, and there are few people with skills to anotate such data, which makes it hard to train performant machine learning models. An important challenge is therefore to :

  • Increase available training datasets.
  • Make labeling easier for professionnals to reduce risks of bad annotations.

In this context, techniques have emerged to perform automatic sign segmentation in videos, by marking the boundaries between individual signs in sign language videos. The developpment of such tools offers the potential to alleviate the limited supply of labelled dataset currently available for sign research.

demo

Previous work and personal contribution :

This repository provides code for the Object Recognition & Computer Vision (RecVis) course Final project. For more details please refer the the project report report.pdf. In this project, we reproduced the results obtained on the following paper (by using the code from this repository) :

We used the pre-extracted frame-level features obtained by applying the I3D model on videos to retrain the MS-TCN architecture for frame-level binary classification and reproduce the papers results. The tests folder proposes a notebook for reproducing the original paper results, with a meanF1B = 68.68 on the evaluation set of the BSL Corpus.

We further implemented new models in order to improve this result. We wanted to try attention based models as they have received recently a huge gain of interest in the vision research community. We first tried to train a Vanilla Transformer Encoder from scratch, but the results were not satisfactory.

  • Attention Is All You Need, Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin: (2018).

We then implemented the ASFormer model (Transformer for Action Segementation), using this code : a hybrid transformer model using some interesting ideas from the MS-TCN architecture. The motivations behind the model and its architecture are detailed in the following paper :

We trained this model on the I3D extracted features and obtained an improvement over the MS-TCN architecture. The results are given in the following table :

ID Model mF1B mF1S
1 MS-TCN 68.68±0.6 47.71±0.8
2 Transformer Encoder 60.28±0.3 42.70±0.2
3 ASFormer 69.79±0.2 49.23±1.2

Contents

Setup

# Clone this repository
git clone https://github.com/loubnabnl/Sign-Segmentation-with-Transformers.git
cd Sign-Segmentation-with-Transformers/
# Create signseg_env environment
conda env create -f environment.yml
conda activate signseg_env

Data and models

You can download the pretrained models (I3D and MS-TCN) (models.zip [302MB]) and data (data.zip [5.5GB]) used in the experiments here or by executing download/download_*.sh. The unzipped data/ and models/ folders should be located on the root directory of the repository (for using the demo downloading the models folder is sufficient).

You can download our best pretrained ASFormer model weights here.

Data:

Please cite the original datasets when using the data: BSL Corpus The authors of github.com/RenzKa/sign-segmentation provided the pre-extracted features and metadata. See here for a detailed description of the data files.

  • Features: data/features/*/*/features.mat
  • Metadata: data/info/*/info.pkl

Models:

  • I3D weights, trained for sign classification: models/i3d/*.pth.tar
  • MS-TCN weights for the demo (see tables below for links to the other models): models/ms-tcn/*.model
  • As_former weights of our best model : models/asformer/*.model

The folder structure should be as below:

sign-segmentation/models/
  i3d/
    i3d_kinetics_bslcp.pth.tar
  ms-tcn/
    mstcn_bslcp_i3d_bslcp.model
  asformer/
    best_asformer_bslcp.model

Demo

The demo folder contains a sample script to estimate the segments of a given sign language video, one can run demo.pyto get a visualization on a sample video.

cd demo
python demo.py

The demo will:

  1. use the models/i3d/i3d_kinetics_bslcp.pth.tar pretrained I3D model to extract features,
  2. use the models/asformer/best_asformer_model.model pretrained ASFormer model to predict the segments out of the features.
  3. save results.

Training

To train I3D please refer to github.com/RenzKa/sign-segmentation. To train ASFormer on the pre-extracted I3D features run main.py, you can change hyperparameters in the arguments inside the file. Or you can run the notebook in the folder test_asformer.

Citation

If you use this code and data, please cite the original papers following:

@inproceedings{Renz2021signsegmentation_a,
    author       = "Katrin Renz and Nicolaj C. Stache and Samuel Albanie and G{\"u}l Varol",
    title        = "Sign Language Segmentation with Temporal Convolutional Networks",
    booktitle    = "ICASSP",
    year         = "2021",
}
@article{yi2021asformer,
  title={Asformer: Transformer for action segmentation},
  author={Yi, Fangqiu and Wen, Hongyu and Jiang, Tingting},
  journal={arXiv preprint arXiv:2110.08568},
  year={2021}
}

License

The license in this repository only covers the code. For data.zip and models.zip we refer to the terms of conditions of original datasets.

Acknowledgements

The code builds on the github.com/RenzKa/sign-segmentation and github.com/ChinaYi/ASFormer repositories.

Owner
Loubna Ben Allal
MVA (Mathematics, Vision, Learning) student at ENS Paris Saclay.
Loubna Ben Allal
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
Alex Pashevich 62 Dec 24, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022