The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

Overview

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might be broken and I definitely don't recommend to use any of the code in any sort of production application. However, for research purposes this code might be useful so I decided to open-source it. Use at your own risk!

Requirements

Use pip to install most requriements (pip install -r requriements.txt). Sometimes this causes problems if Cython, numpy and scipy are not already installed, in which case this needs to be done manually.

Additionally, some packages must be installed that are not provided by pip.

pySimox and pyMMM

pySimox and pyMMM must be installed manually as well. To build them, perform the following steps:

git submodule update --init --recursive
cd vendor/pySimox/build
cmake ..
make
cp _pysimox.so ../../../lib/python2.7/site-packages/_pysimox.so
cp pysimox.py ../../../lib/python2.7/site-packages/pysimox.py
cd ../pyMMM/build
cmake ..
make
cp _pymmm.so ../../../lib/python2.7/site-packages/_pymmm.so
cp pymmm.py ../../../lib/python2.7/site-packages/pymmm.py

Note that the installation script may need some fine-tuning. Additionally, this assumes that all virtualenv is set up in the root of this git repo.

Basic Usage

This repo contains two main programs: dataset.py and evaluate_new.py. All of them are located in src and should be run from this directory. There are some additional files in there, some of them are out-dated and should be deleted (e.g. evaluate.py), some of them are really just scripts and should be moved to the scripts folder eventually.

The dataset tool

The dataset tool is concerened with handling everything related to datasets: plot plots features, export saves a dataset in a variety of formats, report prints details about a dataset and check performs a consistency check. Additionally, export-all can be used to create a dataset that contains all features (normalized and unnormalized) by merging Vicon C3D and MMM files into one giant file. A couple of examples:

  • python dataset.py ../data/dataset1.json plot --features root_pos plots the root_pos feature of all motions in the dataset; the dataset can be a JSON manifest or a pickled dataset
  • python dataset.py ../data/dataset1.json export --output ~/export.pkl exports dataset1 as a single pickled file; usually a JSON manifest is used
  • python dataset.py ../data/dataset1.json export-all --output ~/export_all.pkl exports dataset1 by combining vicon and MMM files and by computing both the normalized and unnormalized version of all features. It also performs normalization on the vicon data by using additional information from the MMM data (namely the root_pos and root_rot); the dataset has to be a JSON manifest
  • python dataset.py ../data/dataset1.json report prints details about a dataset; the dataset can be a JSON manifest or a pickled dataset
  • python dataset.py ../data/dataset1.json check performs a consistency check of a dataset; the manifest has to be a JSON manifest

Additional parameters are avaialble for most commands. Use dataset --help to get an overview.

The evaluate_new tool

The evaluate_new tool can be used to perform feature selection (using the feature command) or to evaluate different types of models with decision makers (by using the model command). It is important to note that the evaluate_new tool expects a pickled version of the dataset, hence export or export_all must be used to prepare a dataset. This is to avoid the computational complexity.

A couple of examples:

  • python evaluate_new.py model ../data/export_all.pkl --features normalized_joint_pos normalized_root_pos --decision-maker log-regression --n-states 5 --model fhmm-seq --output-dir ~/out trains a HMM ensemble with each HMM having 5 states on the normalized_joint_pos and normalized_root_pos features and uses logistic regression to perform the final predicition. The results are also saved in the directory ~/out
  • python evaluate_new.py features ../data/export_all.pkl --features normalized_joint_pos normalized_root_pos --measure wasserstein performs feature selection using the starting set normalized_joint_pos normalized_root_pos and the wasserstein measure

From dataset to result

First, define a JSON manifest dataset.json that links together the individual motions and pick labels. Next, export the dataset by using python dataset.py ../data/dataset.json export-all --output ../data/dataset_all.pkl. If you need smoothing, simply load the dataset (using pickle.load()), call smooth_features() on the Dataset object and dump it to a new file. There's currently no script for this but it can be done using three lines and the interactive python interpreter. Next, perform feature selection using python evaluate_new.py features ../data/dataset_all.pkl --features <list of features> --measure wasserstein --output-dir ~/features --transformers minmax-scaler. You'll want to use the minmax scaler transformer to avoid numerical problems during training. This will probably take a while. The results (at ~/features) will give you the best feature subsets that were found. Next, use those features to train an HMM ensemble: python evaluate_new model ../data/dataset_all.pkl --features <best features> --model fhmm-seq --n-chains 2 --n-states 10 --n-training-iter 30 -decision-maker log-regression --transformers minmax-scaler --output-dir ~/train (again, the minmax-scaler is almost always a good idea). The results will be in ~/output.

Owner
Matthias Plappert
I am a research scientist working on machine learning, and especially deep reinforcement learning, in robotics.
Matthias Plappert
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022