A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

Overview

AnimeGAN

A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

Randomly Generated Images

The images are generated from a DCGAN model trained on 143,000 anime character faces for 100 epochs.

fake_sample_1

Image Interpolation

Manipulating latent codes, enables the transition from images in the first row to the last row.

transition

Original Images

The images are not clean, some outliers can be observed, which degrades the quality of the generated images.

real_sample

Usage

To run the experiment,

$ python main.py --dataRoot path_to_dataset/ 

The pretrained model for DCGAN are also in this repo, play it inside the jupyter notebook.

anime-faces Dataset

Anime-style images of 126 tags are collected from danbooru.donmai.us using the crawler tool gallery-dl. The images are then processed by a anime face detector python-animeface. The resulting dataset contains ~143,000 anime faces. Note that some of the tags may no longer meaningful after cropping, i.e. the cropped face images under 'uniform' tag may not contain visible parts of uniforms.

How to construct the dataset from scratch ?

Prequisites: gallery-dl, python-animeface

  1. Download anime-style images

    # download 1000 images under the tag "misaka_mikoto"
    gallery-dl --images 1000 "https://danbooru.donmai.us/posts?tags=misaka_mikoto"
    
    # in a multi-processing manner
    cat tags.txt | \
    xargs -n 1 -P 12 -I 'tag' \ 
    bash -c ' gallery-dl --images 1000 "https://danbooru.donmai.us/posts?tags=$tag" '
  2. Extract faces from the downloaded images

    import animeface
    from PIL import Image
    
    im = Image.open('images/anime_image_misaka_mikoto.png')
    faces = animeface.detect(im)
    x,y,w,h = faces[0].face.pos
    im = im.crop((x,y,x+w,y+h))
    im.show() # display

I've cleaned the original dataset, the new version of the dataset has 115085 images in 126 tags. You can access the images from:

Non-commercial use please.

Things I've learned

  1. GANs are really hard to train.
  2. DCGAN generally works well, simply add fully-connected layers causes problems.
  3. In my cases, more layers for G yields better images, in the sense that G should be more powerful than D.
  4. Add noise to D's inputs and labels helps stablize training.
  5. Use differnet input and generate resolution (64x64 vs 96x96), there seems no obvious difference during training, the generated images are also very similar.
  6. Binray Noise as G's input amazingly works, but the images are not as good as those with Gussian Noise, idea credit to @cwhy ['Binary Noise' here I mean a sequence of {-1,1} generated by bernoulli distribution at p=0.5 ]

I did not carefully verify them, if you are looking for some general GAN tips, see @soumith's ganhacks

Others

  1. This project is heavily influenced by chainer-DCGAN and IllustrationGAN, the codes are mostly borrowed from PyTorch DCGAN example, thanks the authors for the clean codes.
  2. Dependencies: pytorch, torchvision
  3. This is a toy project for me to learn PyTorch and GANs, most importantly, for fun! :) Any feedback is welcome.

@jayleicn

Comments
  • KeyError: 'module name can\'t contain

    KeyError: 'module name can\'t contain "."'

    The classes in module.py contains some nn.Module layers whose names contains some'.' in it, so I got error messages like the title, so how could I play it??

    opened by bolin12 2
  • no image under some tags

    no image under some tags

    Hi, The dataset from google drive contains 126 tags. However, some folders are emtpy:

    1girl apron blush collarbone hairclip honma_meiko japanese_clothes monochrome necktie nishizumi_miho purple_eyes scarf school_uniform sunglasses

    Is this normal? Thanks

    opened by samrere 1
  • set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().

    set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().

    input.data.resize_(real_cpu.size()).copy_(real_cpu) RuntimeError: set_sizes_contiguous is not allowed on a Tensor created from .data or .detach(). If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset) without autograd tracking the change, remove the .data / .detach() call and wrap the change in a with torch.no_grad(): block. For example, change: x.data.set_(y) to: with torch.no_grad(): x.set_(y)

    opened by athulvingt 0
  • can not run

    can not run

    Traceback (most recent call last): File "main.py", line 6, in import torch File "/Library/Python/2.7/site-packages/torch/init.py", line 81, in from torch._C import * RuntimeError: module compiled against API version 0xa but this version of numpy is 0x9

    opened by xtzero 0
  • How do I start with my own model

    How do I start with my own model

    I would like to know how I can use this image generation to generate my own images from a self made model?

    Where can I read upon on this. I find no concrete info on making the models.

    opened by quintendewilde 0
Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022