Implementation of the GBST block from the Charformer paper, in Pytorch

Overview

Charformer - Pytorch

Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes a module that automatically learns subword representations, obviating the need for tokenizers in the encoder setting.

AI Coffee Break with Letitia video

Install

$ pip install charformer-pytorch

Usage

import torch
from charformer_pytorch import GBST

tokenizer = GBST(
    num_tokens = 257,             # number of tokens, should be 256 for byte encoding (+ 1 special token for padding in this example)
    dim = 512,                    # dimension of token and intra-block positional embedding
    max_block_size = 4,           # maximum block size
    downsample_factor = 4,        # the final downsample factor by which the sequence length will decrease by
    score_consensus_attn = True   # whether to do the cheap score consensus (aka attention) as in eq. 5 in the paper
)

tokens = torch.randint(0, 257, (1, 1023)) # uneven number of tokens (1023)
mask   = torch.ones(1, 1023).bool()

# both tokens and mask will be appropriately downsampled

tokens, mask = tokenizer(tokens, mask = mask) # (1, 256, 512), (1, 256)

# now pass this on to your transformer

Citations

@misc{tay2021charformer,
    title   = {Charformer: Fast Character Transformers via Gradient-based Subword Tokenization}, 
    author  = {Yi Tay and Vinh Q. Tran and Sebastian Ruder and Jai Gupta and Hyung Won Chung and Dara Bahri and Zhen Qin and Simon Baumgartner and Cong Yu and Donald Metzler},
    year    = {2021},
    eprint  = {2106.12672},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
Comments
  • positional embedding

    positional embedding

    Screenshot from 2021-06-30 12-12-17

    in section 2.1.1 in the paper, the authors claim that by adding intra-block positional embeddings https://github.com/lucidrains/charformer-pytorch/blob/main/charformer_pytorch/charformer_pytorch.py#L90-L96 the block representations will be aware of the position of each character. however, if one were to be doing mean pooling as the author propose, wouldn't this amount to just adding the mean of the positional embeddings for every block? If anyone has any insights, please leave a comment

    help wanted 
    opened by lucidrains 3
  • Cannot tokenize on GPU

    Cannot tokenize on GPU

    Hi,

    I'm using Charformer to do some error corrections on Colab. But I found that after I pass tokens to CUDA and start tokenizing, this would show up: image

    Did I do it in a wrong way?

    opened by Shamepoo 2
  • example of how to read in/tokenize a text file, for use with HuggingFace Transformers?

    example of how to read in/tokenize a text file, for use with HuggingFace Transformers?

    Hello, I was attempting to adapt this guide for use with Charformer Pytorch. Colab notebook for that guide is here.

    I'd like to be able to use GBST on the same data, https://cdn-datasets.huggingface.co/EsperBERTo/data/oscar.eo.txt, but I'm not sure how to pass that in.

    I tried looking at the source code, and the other issues here, but haven't yet found the details.

    Some specific questions:

    • how do I "train" this tokenizer on a .txt file?
    • is it compatible with this section of the HF notebook, aka can it be passed into LineByLineTextDataset?
    from transformers import LineByLineTextDataset
    
    dataset = LineByLineTextDataset(
        tokenizer=tokenizer,
        file_path="./oscar.eo.txt",
        block_size=128,
    )
    

    When I tried doing that line, I got the following error:

    /usr/local/lib/python3.7/dist-packages/transformers/data/datasets/language_modeling.py:124: FutureWarning: This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets library. You can have a look at this example script for pointers: https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
      FutureWarning,
    
    ---------------------------------------------------------------------------
    
    TypeError                                 Traceback (most recent call last)
    
    <ipython-input-38-1688c68b48be> in <module>()
          5     tokenizer=tokenizer,
          6     file_path="./oscar.eo.txt",
    ----> 7     block_size=128,
          8 )
    
    1 frames
    
    /usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
       1049         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
       1050                 or _global_forward_hooks or _global_forward_pre_hooks):
    -> 1051             return forward_call(*input, **kwargs)
       1052         # Do not call functions when jit is used
       1053         full_backward_hooks, non_full_backward_hooks = [], []
    
    TypeError: forward() got an unexpected keyword argument 'add_special_tokens'
    
    opened by cdleong 0
  • Sequence Length Problem in NMT

    Sequence Length Problem in NMT

    After downsampling, the length of the sequence has been shortened. But how can I return the sequence to its original length since I may need to do sentence generation in error correction?

    Thank you!

    opened by Shamepoo 1
  • Bytes vs. Characters

    Bytes vs. Characters

    The authors address the difference between bytes and characters in footnote 2, it seems like the byte is just the char embedding with dimension of 256. However, in the last sentence, For other languages, each character corresponds to 2–3 bytes in general. For simplicity and to align with prior work, we will generally talk about characters unless stated otherwise. and the example 子词分词, it becomes 子子子词词词分分分词词词, with the 3 bytes in every character.

    What I want to know is, 3 bytes mean we replicate three times for every single character, then feed into embedding? If so, how to decide the number of bytes.

    Thank you.

    opened by jamfly 0
Releases(0.0.4)
Owner
Phil Wang
Working with Attention
Phil Wang
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022