HistoKT: Cross Knowledge Transfer in Computational Pathology

Related tags

Deep LearningHistoKT
Overview

HistoKT: Cross Knowledge Transfer in Computational Pathology

Exciting News! HistoKT has been accepted to ICASSP 2022.

HistoKT: Cross Knowledge Transfer in Computational Pathology,
Ryan Zhang, Jiadai Zhu, Stephen Yang, Mahdi S. Hosseini, Angelo Genovese, Lina Chen, Corwyn Rowsell, Savvas Damaskinos, Sonal Varma, Konstantinos N. Plataniotis
Accepted in 2022 IEEE International Conference on Acourstics, Speech, and Signal Processing (ICASSP2022)

Overview

In computational pathology, the lack of well-annotated datasets obstructs the application of deep learning techniques. Since pathologist time is expensive, dataset curation is intrinsically difficult. Thus, many CPath workflows involve transferring learned knowledge between various image domains through transfer learning. Currently, most transfer learning research follows a model-centric approach, tuning network parameters to improve transfer results over few datasets. In this paper, we take a data-centric approach to the transfer learning problem and examine the existence of generalizable knowledge between histopathological datasets. First, we create a standardization workflow for aggregating existing histopathological data. We then measure inter-domain knowledge by training ResNet18 models across multiple histopathological datasets, and cross-transferring between them to determine the quantity and quality of innate shared knowledge. Additionally, we use weight distillation to share knowledge between models without additional training. We find that hard to learn, multi-class datasets benefit most from pretraining, and a two stage learning framework incorporating a large source domain such as ImageNet allows for better utilization of smaller datasets. Furthermore, we find that weight distillation enables models trained on purely histopathological features to outperform models using external natural image data.

Results

We report our transfer learning using ResNet18 results accross various datasets, with two initialization methods (random and ImageNet initialization). Each item in the matrix represents the Top-1 test accuracy of a ResNet18 model trained on the source dataset and deep-tuned on the target dataset. Items are highlighted in a colour gradient from deep red to deep green, where green represents significant accuracy improvement after tuning, and red represents accuracy decline after tuning.

No Pretraining

ImageNet Initialization

Table of Contents

Getting Started

Dependencies

  • Requirements are specified in requirements.txt
argon2-cffi==20.1.0
async-generator==1.10
attrs==21.2.0
backcall==0.2.0
bleach==3.3.0
cffi==1.14.5
colorama==0.4.4
cycler==0.10.0
decorator==4.4.2
defusedxml==0.7.1
entrypoints==0.3
et-xmlfile==1.1.0
h5py==3.2.1
imageio==2.9.0
ipykernel==5.5.4
ipython==7.23.1
ipython-genutils==0.2.0
ipywidgets==7.6.3
jedi==0.18.0
Jinja2==3.0.0
joblib==1.0.1
jsonschema==3.2.0
jupyter==1.0.0
jupyter-client==6.1.12
jupyter-console==6.4.0
jupyter-core==4.7.1
jupyterlab-pygments==0.1.2
jupyterlab-widgets==1.0.0
kiwisolver==1.3.1
MarkupSafe==2.0.0
matplotlib==3.4.2
matplotlib-inline==0.1.2
mistune==0.8.4
nbclient==0.5.3
nbconvert==6.0.7
nbformat==5.1.3
nest-asyncio==1.5.1
networkx==2.5.1
notebook==6.3.0
numpy==1.20.3
openpyxl==3.0.7
packaging==20.9
pandas==1.2.4
pandocfilters==1.4.3
parso==0.8.2
pickleshare==0.7.5
Pillow==8.2.0
prometheus-client==0.10.1
prompt-toolkit==3.0.18
pyaml==20.4.0
pycparser==2.20
Pygments==2.9.0
pyparsing==2.4.7
pyrsistent==0.17.3
python-dateutil==2.8.1
pytz==2021.1
PyWavelets==1.1.1
pywin32==300
pywinpty==0.5.7
PyYAML==5.4.1
pyzmq==22.0.3
qtconsole==5.1.0
QtPy==1.9.0
scikit-image==0.18.1
scikit-learn==0.24.2
scipy==1.6.3
Send2Trash==1.5.0
six==1.16.0
sklearn==0.0
terminado==0.9.5
testpath==0.4.4
threadpoolctl==2.1.0
tifffile==2021.4.8
torch==1.8.1+cu102
torchaudio==0.8.1
torchvision==0.9.1+cu102
tornado==6.1
traitlets==5.0.5
typing-extensions==3.10.0.0
wcwidth==0.2.5
webencodings==0.5.1
widgetsnbextension==3.5.1

Running the Code

This codebase was created in collaboration with the RMSGD repository. As such, much of the training pipeline is shared.

Downloading datasets

All available datasets can be found on their respective websites. Some datasets, such as ADP, are available by request.

A list of all datasets used in this paper can be found below:

Preprocessing and Training

To prepare datasets for training, please use the functions found in dataset_processing\standardize_datasets.py after downloading all the datasets and placing them all in one folder.

cd HistoKT/dataset_processing
python standardize_datasets.py

A standardized version of each dataset will be created in the dataset folder.

To run the code for training, use the src/adas/train.py file:

cd HistoKT
python src/adas/train.py --config CONFIG --data DATA_FOLDER

Options for Training

--config CONFIG       Set configuration file path: Default = 'configAdas.yaml'
--data DATA           Set data directory path: Default = '.adas-data'
--output OUTPUT       Set output directory path: Default = '.adas-output'
--checkpoint CHECKPOINT
                    Set checkpoint directory path: Default = '.adas-checkpoint'
--resume RESUME       Set checkpoint resume path: Default = None
--pretrained_model PRETRAINED_MODEL
                    Set checkpoint pretrained model path: Default = None
--freeze_encoder FREEZE_ENCODER
                    Set if to freeze encoder for post training: Default = True
--root ROOT           Set root path of project that parents all others: Default = '.'
--save-freq SAVE_FREQ
                    Checkpoint epoch save frequency: Default = 25
--cpu                 Flag: CPU bound training: Default = False
--gpu GPU             GPU id to use: Default = 0
--multiprocessing-distributed
                    Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either   
                    single node or multi node data parallel training: Default = False
--dist-url DIST_URL   url used to set up distributed training:Default = 'tcp://127.0.0.1:23456'
--dist-backend DIST_BACKEND
                    distributed backend: Default = 'nccl'
--world-size WORLD_SIZE
                    Number of nodes for distributed training: Default = -1
--rank RANK           Node rank for distributed training: Default = -1
--color_aug COLOR_AUG
                    override config color augmentation, can also choose "no_aug"
--norm_vals NORM_VALS
                    override normalization values, use dataset string. e.g. "BACH_transformed"

Training Output

All training output will be saved to the OUTPUT_PATH location. After a full experiment, results will be recorded in the following format:

  • OUTPUT
    • Timestamped xlsx sheet with the record of train and validation (notated as test) acc, loss, and rank metrics for each layer in the network (refer to AdaS)
  • CHECKPOINT
    • checkpoint dictionaries with a snapshot of the model's parameters at a given epoch.

Code Organization

Configs

We provide sample configuration files for ResNet18 over all used datasets in configs\NewPretrainingConfigs

These configs were used for training the model on each dataset from random initialization.

All available options can be found in the config files.

Visualization

We provide sample code to plot training curves in Plots

We provide sample code on using the statistical method t-SNE to visualize the high-dimensional features in T-sne.

We provide sample code on using the visual explanation algorithm Grad-CAM heat-maps in gradCAM.

Version History

  • 0.1
    • Initial Release
Owner
Mahdi S. Hosseini
Assistant Professor in ECE Department at University of New Brunswick. My research interests cover broad topics in Machine Learning and Computer Vision problems
Mahdi S. Hosseini
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023