Semantic Segmentation in Pytorch

Related tags

Deep Learningsemseg
Overview

PyTorch Semantic Segmentation

Introduction

This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to use for training and testing on various datasets. The codebase mainly uses ResNet50/101/152 as backbone and can be easily adapted to other basic classification structures. Implemented networks including PSPNet and PSANet, which ranked 1st places in ImageNet Scene Parsing Challenge 2016 @ECCV16, LSUN Semantic Segmentation Challenge 2017 @CVPR17 and WAD Drivable Area Segmentation Challenge 2018 @CVPR18. Sample experimented datasets are ADE20K, PASCAL VOC 2012 and Cityscapes.

Update

  • 2020.05.15: Branch master, use official nn.SyncBatchNorm, only multiprocessing training is supported, tested with pytorch 1.4.0.
  • 2019.05.29: Branch 1.0.0, both multithreading training (nn.DataParallel) and multiprocessing training (nn.parallel.DistributedDataParallel) (recommended) are supported. And the later one is much faster. Use syncbn from EncNet and apex, tested with pytorch 1.0.0.

Usage

  1. Highlight:

  2. Requirement:

    • Hardware: 4-8 GPUs (better with >=11G GPU memory)
    • Software: PyTorch>=1.1.0, Python3, tensorboardX,
  3. Clone the repository:

    git clone https://github.com/hszhao/semseg.git
  4. Train:

    • Download related datasets and symlink the paths to them as follows (you can alternatively modify the relevant paths specified in folder config):

      cd semseg
      mkdir -p dataset
      ln -s /path_to_ade20k_dataset dataset/ade20k
      
    • Download ImageNet pre-trained models and put them under folder initmodel for weight initialization. Remember to use the right dataset format detailed in FAQ.md.

    • Specify the gpu used in config then do training:

      sh tool/train.sh ade20k pspnet50
    • If you are using SLURM for nodes manager, uncomment lines in train.sh and then do training:

      sbatch tool/train.sh ade20k pspnet50
  5. Test:

    • Download trained segmentation models and put them under folder specified in config or modify the specified paths.

    • For full testing (get listed performance):

      sh tool/test.sh ade20k pspnet50
    • Quick demo on one image:

      PYTHONPATH=./ python tool/demo.py --config=config/ade20k/ade20k_pspnet50.yaml --image=figure/demo/ADE_val_00001515.jpg TEST.scales '[1.0]'
  6. Visualization: tensorboardX incorporated for better visualization.

    tensorboard --logdir=exp/ade20k
  7. Other:

    • Resources: GoogleDrive LINK contains shared models, visual predictions and data lists.
    • Models: ImageNet pre-trained models and trained segmentation models can be accessed. Note that our ImageNet pretrained models are slightly different from original ResNet implementation in the beginning part.
    • Predictions: Visual predictions of several models can be accessed.
    • Datasets: attributes (names and colors) are in folder dataset and some sample lists can be accessed.
    • Some FAQs: FAQ.md.
    • Former video predictions: high accuracy -- PSPNet, PSANet; high efficiency -- ICNet.

Performance

Description: mIoU/mAcc/aAcc stands for mean IoU, mean accuracy of each class and all pixel accuracy respectively. ss denotes single scale testing and ms indicates multi-scale testing. Training time is measured on a sever with 8 GeForce RTX 2080 Ti. General parameters cross different datasets are listed below:

  • Train Parameters: sync_bn(True), scale_min(0.5), scale_max(2.0), rotate_min(-10), rotate_max(10), zoom_factor(8), ignore_label(255), aux_weight(0.4), batch_size(16), base_lr(1e-2), power(0.9), momentum(0.9), weight_decay(1e-4).
  • Test Parameters: ignore_label(255), scales(single: [1.0], multiple: [0.5 0.75 1.0 1.25 1.5 1.75]).
  1. ADE20K: Train Parameters: classes(150), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(100). Test Parameters: classes(150), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train (20210 images) set and test on val (2000 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.4189/0.5227/0.8039. 0.4284/0.5266/0.8106. 14h
    PSANet50 0.4229/0.5307/0.8032. 0.4305/0.5312/0.8101. 14h
    PSPNet101 0.4310/0.5375/0.8107. 0.4415/0.5426/0.8172. 20h
    PSANet101 0.4337/0.5385/0.8102. 0.4414/0.5392/0.8170. 20h
  2. PSACAL VOC 2012: Train Parameters: classes(21), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(50). Test Parameters: classes(21), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train_aug (10582 images) set and test on val (1449 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7705/0.8513/0.9489. 0.7802/0.8580/0.9513. 3.3h
    PSANet50 0.7725/0.8569/0.9491. 0.7787/0.8606/0.9508. 3.3h
    PSPNet101 0.7907/0.8636/0.9534. 0.7963/0.8677/0.9550. 5h
    PSANet101 0.7870/0.8642/0.9528. 0.7966/0.8696/0.9549. 5h
  3. Cityscapes: Train Parameters: classes(19), train_h(713/709-PSP/A), train_w(713/709-PSP/A), epochs(200). Test Parameters: classes(19), test_h(713/709-PSP/A), test_w(713/709-PSP/A), base_size(2048).

    • Setting: train on fine_train (2975 images) set and test on fine_val (500 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7730/0.8431/0.9597. 0.7838/0.8486/0.9617. 7h
    PSANet50 0.7745/0.8461/0.9600. 0.7818/0.8487/0.9622. 7.5h
    PSPNet101 0.7863/0.8577/0.9614. 0.7929/0.8591/0.9638. 10h
    PSANet101 0.7842/0.8599/0.9621. 0.7940/0.8631/0.9644. 10.5h

Citation

If you find the code or trained models useful, please consider citing:

@misc{semseg2019,
  author={Zhao, Hengshuang},
  title={semseg},
  howpublished={\url{https://github.com/hszhao/semseg}},
  year={2019}
}
@inproceedings{zhao2017pspnet,
  title={Pyramid Scene Parsing Network},
  author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
  booktitle={CVPR},
  year={2017}
}
@inproceedings{zhao2018psanet,
  title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing},
  author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya},
  booktitle={ECCV},
  year={2018}
}

Question

Some FAQ.md collected. You are welcome to send pull requests or give some advices. Contact information: hengshuangzhao at gmail.com.

Owner
Hengshuang Zhao
Hengshuang Zhao
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021