PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Overview

Generalization in Dexterous Manipulation via
Geometry-Aware Multi-Task Learning

[Project Page] [Paper]

Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1, Deepak Pathak3

1University of California, Berkeley, 2Google Brain, 3Carnegie Mellon University

This is a PyTorch implementation of our Geometry-Aware Multi-Task Policy. The codebase also includes a suite of dexterous manipulation environments with 114 diverse real-world objects built upon Gym and MuJoCo.

We show that a single generalist policy can perform in-hand manipulation of over 100 geometrically-diverse real-world objects and generalize to new objects with unseen shape or size. Interestingly, we find that multi-task learning with object point cloud representations not only generalizes better but even outperforms the single-object specialist policies on both training as well as held-out test objects.

If you find this work useful in your research, please cite using the following BibTeX:

@article{huang2021geometry,
  title={Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning},
  author={Huang, Wenlong and Mordatch, Igor and Abbeel, Pieter and Pathak, Deepak},
  journal={arXiv preprint arXiv:2111.03062},
  year={2021}
}

Setup

Requirements

Setup Instructions

git clone https://github.com/huangwl18/geometry-dex.git
cd geometry-dex/
conda create --name geometry-dex-env python=3.6.9
conda activate geometry-dex-env
pip install --upgrade pip
pip install -r requirements.txt
bash install-baselines.sh

Running Code

Below are some flags and parameters for run_ddpg.py that you may find useful for reference:

Flags and Parameters Description
--expID <INT> Experiment ID
--train_names <List of STRING> list of environments for training; separated by space
--test_names <List of STRING> list of environments for zero-shot testing; separated by space
--point_cloud Use geometry-aware policy
--pointnet_load_path <INT> Experiment ID from which to load the pre-trained Pointnet; required for --point_cloud
--video_count <INT> Number of videos to generate for each env per cycle; only up to 1 is currently supported; 0 to disable
--n_test_rollouts <INT> Total number of collected rollouts across all train + test envs for each evaluation run; should be multiple of len(train_names) + len(test_names)
--num_rollouts <INT> Total number of collected rollouts across all train envs for 1 training cycle; should be multiple of len(train_names)
--num_parallel_envs <INT> Number of parallel envs to create for vec_env; should be multiple of len(train_names)
--chunk_size <INT> Number of parallel envs asigned to each worker in SubprocChunkVecEnv; 0 to disable and use SubprocVecEnv
--num_layers <INT> Number of layers in MLP for all policies
--width <INT> Width of each layer in MLP for all policies
--seed <INT> seed for Gym, PyTorch and NumPy
--eval Perform only evaluation using latest checkpoint
--load_path <INT> Experiment ID from which to load the checkpoint for DDPG; required for --eval

The code also uses WandB. You may wish to run wandb login in terminal to record to your account or choose to run anonymously.

WARNING: Due to the large number of total environments, generating videos during training can be slow and memory intensive. You may wish to train the policy without generating videos by passing video_count=0. After training completes, simply run run_ddpg.py with flags --eval and --video_count=1 to visualize the policy. See example below.

Training

To train Vanilla Multi-Task DDPG policy:

python run_ddpg.py --expID 1 --video_count 0 --n_cycles 40000 --chunk 10

To train Geometry-Aware Multi-Task DDPG policy, first pretrain PointNet encoder:

python train_pointnet.py --expID 2

Then train the policy:

python run_ddpg.py --expID 3 --video_count 0 --n_cycles 40000 --chunk 10 --point_cloud --pointnet_load_path 2 --no_save_buffer

Note we don't save replay buffer here because it is slow as it contains sampled point clouds. If you wish to resume training in the future, do not pass --no_save_buffer above.

Evaluation / Visualization

To evaluate a trained policy and generate video visualizations, run the same command used to train the policy but with additional flags --eval --video_count=<VIDEO_COUNT> --load_path=<LOAD_EXPID>. Replace <VIDEO_COUNT> with 1 if you wish to enable visualization and 0 otherwise. Replace <LOAD_EXPID> with the Experiment ID of the trained policy. For a Geometry-Aware Multi-Task DDPG policy trained using above command, run the following for evaluation and visualization:

python run_ddpg.py --expID 4 --video_count 1 --n_cycles 40000 --chunk 10 --point_cloud --pointnet_load_path 2 --no_save_buffer --eval --load_path 3

Trained Models

We will be releasing trained model files for our Geometry-Aware Policy and single-task oracle policies for each individual object. Stay tuned! Early access can be requested via email.

Provided Environments

Training Envs

e_toy_airplane

knife

flat_screwdriver

elephant

apple

scissors

i_cups

cup

foam_brick

pudding_box

wristwatch

padlock

power_drill

binoculars

b_lego_duplo

ps_controller

mouse

hammer

f_lego_duplo

piggy_bank

can

extra_large_clamp

peach

a_lego_duplo

racquetball

tuna_fish_can

a_cups

pan

strawberry

d_toy_airplane

wood_block

small_marker

sugar_box

ball

torus

i_toy_airplane

chain

j_cups

c_toy_airplane

airplane

nine_hole_peg_test

water_bottle

c_cups

medium_clamp

large_marker

h_cups

b_colored_wood_blocks

j_lego_duplo

f_toy_airplane

toothbrush

tennis_ball

mug

sponge

k_lego_duplo

phillips_screwdriver

f_cups

c_lego_duplo

d_marbles

d_cups

camera

d_lego_duplo

golf_ball

k_toy_airplane

b_cups

softball

wine_glass

chips_can

cube

master_chef_can

alarm_clock

gelatin_box

h_lego_duplo

baseball

light_bulb

banana

rubber_duck

headphones

i_lego_duplo

b_toy_airplane

pitcher_base

j_toy_airplane

g_lego_duplo

cracker_box

orange

e_cups
Test Envs

rubiks_cube

dice

bleach_cleanser

pear

e_lego_duplo

pyramid

stapler

flashlight

large_clamp

a_toy_airplane

tomato_soup_can

fork

cell_phone

m_lego_duplo

toothpaste

flute

stanford_bunny

a_marbles

potted_meat_can

timer

lemon

utah_teapot

train

g_cups

l_lego_duplo

bowl

door_knob

mustard_bottle

plum

Acknowledgement

The code is adapted from this open-sourced implementation of DDPG + HER. The object meshes are from the YCB Dataset and the ContactDB Dataset. We use SubprocChunkVecEnv from this pull request of OpenAI Baselines to speedup vectorized environments.

Owner
Wenlong Huang
Undergraduate Student @ UC Berkeley
Wenlong Huang
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Rohit Ingole 2 Mar 24, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023