[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

Overview

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page]

@inproceedings{
  huang2021fapn,
  title={{FaPN}: Feature-aligned Pyramid Network for Dense Image Prediction},
  author={Shihua Huang and Zhichao Lu and Ran Cheng and Cheng He},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Overview

FaPN vs. FPN Before vs. After Alignment

This project provides the official implementation for our ICCV2021 paper "FaPN: Feature-aligned Pyramid Network for Dense Image Prediction" based on Detectron2. FaPN is a simple yet effective top-down pyramidal architecture to generate multi-scale features for dense image prediction. Comprised of a feature alignment module (FAM) and a feature selection module (FSM), FaPN addresses the issue of feature alignment in the original FPN, leading to substaintial improvements on various dense prediction tasks, such as object detection, semantic, instance, panoptic segmentation, etc.

Installation

This project is based on Detectron2, which can be constructed as follows.

Training

To train a model with 8 GPUs, run:

cd /path/to/detectron2/tools
python3 train_net.py --config-file <config.yaml> --num-gpus 8

For example, to launch Faster R-CNN training (1x schedule) with ResNet-50 backbone on 8 GPUs, one should execute:

cd /path/to/detectron2/tools
python3 train_net.py --config-file ../configs\COCO-Detection\faster_rcnn_R_50_FAN_1x.yaml --num-gpus 8

Evaluation

To evaluate a pre-trained model with 8 GPUs, run:

cd /path/to/detectron2/tools
python3 train_net.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS /path/to/model_checkpoint

Results

COCO Object Detection

Faster R-CNN + FaPN:

Name lr
sched
box
AP
box
APs
box
APm
box
APl
download
R50 1x 39.2 24.5 43.3 49.1 model |  log
R101 3x 42.8 27.0 46.2 54.9 model |  log

Cityscapes Semantic Segmentation

PointRend + FaPN:

Name lr
sched
mask
mIoU
mask
i_IoU
mask
IoU_sup
mask
iIoU_sup
download
R50 1x 80.0 61.3 90.6 78.5 model |  log
R101 1x 80.1 62.2 90.8 78.6 model |  log

COCO Instance Segmentation

Mask R-CNN + FaPN:

Name lr
sched
mask
AP
mask
APs
box
AP
box
APs
download
R50 1x 36.4 18.1 39.8 24.3 model |  log
R101 3x 39.4 20.9 43.8 27.4 model |  log

PointRend + FaPN:

Name lr
sched
mask
AP
mask
APs
box
AP
box
APs
download
R50 1x 37.6 18.6 39.4 24.2 model |  log

COCO Panoptic Segmentation

PanopticFPN + FaPN:

Name lr
sched
PQ mask
mIoU
St
PQ
box
AP
Th
PQ
download
R50 1x 41.1 43.4 32.5 38.7 46.9 model |  log
R101 3x 44.2 45.7 35.0 43.0 53.3 model |  log
Owner
EMI-Group
The Evolving Machine Intelligence (EMI) Group, established in 2018, is motivated to understand how evolution generates complexity, diversity and intelligence.
EMI-Group
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023