DLL: Direct Lidar Localization

Related tags

Deep Learningdll
Overview

DLL: Direct Lidar Localization

Summary

This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aerial robots. DLL implements a point cloud to map registration based on non-linear optimization of the distance of the points and the map, thus not requiring features, neither point correspondences. Given an initial pose, the method is able to track the pose of the robot by refining the predicted pose from odometry. The method performs much better than Monte-Carlo localization methods and achieves comparable precision to other optimization-based approaches but running one order of magnitude faster. The method is also robust under odometric errors.

DLL is fully integarted in Robot Operating System (ROS). It follows the general localization apparoch of ROS, DLL makes use of sensor data to compute the transform that better fits the robot odometry TF into the map. Although an odometry system is recommended for fast and accurate localization, DLL also performs well without odometry information if the robot moves smoothly.

DLL experimental results in different setups

Software dependencies

There are not hard dependencies except for Google Ceres Solver and ROS:

Hardware requirements

DLL has been tested in a 10th generation Intel i7 processor, with 16GB of RAM. No graphics card is needed. The optimization is currently configured to be single threaded. You can easily reduce the processing time by a 33% just increasing the number of threads used by Ceres Solver.

Compilation

Download this source code into the src folder of your catkin worksapce:

$ cd catkin_ws/src
$ git clone https://github.com/robotics-upo/dll

Compile the project:

$ cd catkin_ws
$ source devel/setup.bash
$ catkin_make

How to use DLL

You can find several examples into the launch directory. The module needs the following input information:

  • A map of the environment. This map is provided as a .bt file
  • You need to provide an initial position of the robot into the map.
  • base_link to odom TF. If the sensor is not in base_link frame, the corresponding TF from sensor to base_link must be provided.
  • 3D point cloud from the sensor. This information can be provided by a 3D LIDAR or 3D camera.
  • IMU information is used to get roll and pitch angles. If you don't have IMU, DLL will take the roll and pitch estimations from odometry as the truth values.

Once launched, DLL will publish a TF between map and odom that alligns the sensor point cloud to the map.

When a new map is provided, DLL will compute the Distance Field grid. This file will be automatically generated on startup if it does not exist. Once generated, it is stored in the same path of the .bt map, so that it is not needed to be computed in future executions.

As example, you can download 5 datasets from the Service Robotics Laboratory repository (https://robotics.upo.es/datasets/dll/). The example launch files are prepared and configured to work with these bags. You can see the different parameters of the method. Notice that, except for mbzirc.bag, these bags do not include odometry estimation. For this reason, as an easy work around, the lauch files publish a fake odometry that is the identity matrix. DLL is faster and more accurate when a good odometry is available.

Cite

DLL has been accepted for publication in IROS 2021.

F. Caballero and L. Merino. "DLL: Direct LIDAR Localization. A map-based localization approach for aerial robots". Sumbitted to the International Conference on Intelligent Robots and Systems, IROS 2021.

You can download preliminar version of the the paper from arXiv

Comments
  • Using Livox mid 70 get bad result

    Using Livox mid 70 get bad result

    Hi, I use Livox mid 70 with wheel odometry and IMU, but the localization result is not good, the robot pose always "jump" when running. any idea to make a better result (stable, smooth, continues path)

    opened by gongyue666 9
  • Run other datasets

    Run other datasets

    hello!I saved a .ot file in dll/maps. And <arg name="map" default="myown.ot" /> But when I run the program , it shows "NULL otcomap". How come?Where else do I need to set the path?

    opened by MIke-1118 6
  • tested the given bag failed

    tested the given bag failed

    Hi, thanks for your great work! I have download the given bag for test the dll,but when i launched the launch file,it always shows the error,which is : " Octomap loaded Map size: x: 37.2 to 92.75 y: 41.95 to 95.65 z: -10.4 to 0.15 Res: 0.05 Error opening file /home/whx/study/dll_ws/src/dll/maps/airsim.grid for reading Computing 3D occupancy grid. This will take some time... [ INFO] [1640669470.668451692, 1614448809.604375476]: Progress: 0.000000 % [ INFO] [1640669471.163893210, 1614448810.107720910]: Progress: 0.021567 % [ INFO] [1640669471.668560708, 1614448810.612384198]: Progress: 0.039648 % [ INFO] [1640669472.172075265, 1614448811.115887848]: Progress: 0.053874 % [ INFO] [1640669472.680451449, 1614448811.624293216]: Progress: 0.065055 % [ INFO] [1640669473.184041975, 1614448812.127884273]: Progress: 0.073926 % ... ... [bag_player-2] process has finished cleanly log file: /home/whx/.ros/log/5879e12a-679f-11ec-9f57-c0e43482dfff/bag_player-2*.log " I have noticed there is a closed issue which talk about it,so i repeated the same test for many times.But it didn't work.

    I hope someone can help me solve the problem.

    Best wishes

    opened by numb0824 2
  • open map file failed

    open map file failed

    Thanks for your great works! I want to run your code just used roslaunch dll airsim1.launch and changed the true path about the .bag. But I meet the following error Screenshot from 2021-11-30 10-16-11 Could you help me how to solve the problem? Thanks.

    opened by huangsiyuan0717 2
  • Transform of input map

    Transform of input map

    Hello!

    I'd first like to thank you for this work, it's very interesting!

    I have a question regarding the internal representation of the map: when looking through the code I notice that you subtract the minimum values from each axis of the points. I suppose this is relevant for the method? I got some (obviously) poor results when I assumed the input map and internal representation were the same.

    I think it would be nice to make this clearer in the readme, or potentially add some transform between the original map and the internal representation such that the initial position set in the launch file could be relative the original map.

    opened by MartinEekGerhardsen 3
Releases(v1.1)
  • v1.1(Mar 22, 2022)

    Improved memory allocation and solver parameterization

    • Added use_yaw_increments parameter that uses yaw increments from IMU since last LIDAR update as initial guess for the optimizer. This is a good choice when robot performs very fast yaw rotations
    • Added grid trilinear interpolation computation online. This will reduce the DLL memory requirements by a factor of 7 approximatelly
    • Added parameters to set solver max iterations and max threads
    • Added comprehensive message when .grid files is no found
    Source code(tar.gz)
    Source code(zip)
  • v1.0(Mar 22, 2022)

    Initial Commit

    • This version contains the source code related wit the IROS paper detailed in the README
    • Some cleaning has been done to make it simpler to understand
    Source code(tar.gz)
    Source code(zip)
Owner
Service Robotics Lab
Service Robotics, Autonomous Robot Navigation, Machine Learning, Social Robotics
Service Robotics Lab
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022