DLL: Direct Lidar Localization

Related tags

Deep Learningdll
Overview

DLL: Direct Lidar Localization

Summary

This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aerial robots. DLL implements a point cloud to map registration based on non-linear optimization of the distance of the points and the map, thus not requiring features, neither point correspondences. Given an initial pose, the method is able to track the pose of the robot by refining the predicted pose from odometry. The method performs much better than Monte-Carlo localization methods and achieves comparable precision to other optimization-based approaches but running one order of magnitude faster. The method is also robust under odometric errors.

DLL is fully integarted in Robot Operating System (ROS). It follows the general localization apparoch of ROS, DLL makes use of sensor data to compute the transform that better fits the robot odometry TF into the map. Although an odometry system is recommended for fast and accurate localization, DLL also performs well without odometry information if the robot moves smoothly.

DLL experimental results in different setups

Software dependencies

There are not hard dependencies except for Google Ceres Solver and ROS:

Hardware requirements

DLL has been tested in a 10th generation Intel i7 processor, with 16GB of RAM. No graphics card is needed. The optimization is currently configured to be single threaded. You can easily reduce the processing time by a 33% just increasing the number of threads used by Ceres Solver.

Compilation

Download this source code into the src folder of your catkin worksapce:

$ cd catkin_ws/src
$ git clone https://github.com/robotics-upo/dll

Compile the project:

$ cd catkin_ws
$ source devel/setup.bash
$ catkin_make

How to use DLL

You can find several examples into the launch directory. The module needs the following input information:

  • A map of the environment. This map is provided as a .bt file
  • You need to provide an initial position of the robot into the map.
  • base_link to odom TF. If the sensor is not in base_link frame, the corresponding TF from sensor to base_link must be provided.
  • 3D point cloud from the sensor. This information can be provided by a 3D LIDAR or 3D camera.
  • IMU information is used to get roll and pitch angles. If you don't have IMU, DLL will take the roll and pitch estimations from odometry as the truth values.

Once launched, DLL will publish a TF between map and odom that alligns the sensor point cloud to the map.

When a new map is provided, DLL will compute the Distance Field grid. This file will be automatically generated on startup if it does not exist. Once generated, it is stored in the same path of the .bt map, so that it is not needed to be computed in future executions.

As example, you can download 5 datasets from the Service Robotics Laboratory repository (https://robotics.upo.es/datasets/dll/). The example launch files are prepared and configured to work with these bags. You can see the different parameters of the method. Notice that, except for mbzirc.bag, these bags do not include odometry estimation. For this reason, as an easy work around, the lauch files publish a fake odometry that is the identity matrix. DLL is faster and more accurate when a good odometry is available.

Cite

DLL has been accepted for publication in IROS 2021.

F. Caballero and L. Merino. "DLL: Direct LIDAR Localization. A map-based localization approach for aerial robots". Sumbitted to the International Conference on Intelligent Robots and Systems, IROS 2021.

You can download preliminar version of the the paper from arXiv

Comments
  • Using Livox mid 70 get bad result

    Using Livox mid 70 get bad result

    Hi, I use Livox mid 70 with wheel odometry and IMU, but the localization result is not good, the robot pose always "jump" when running. any idea to make a better result (stable, smooth, continues path)

    opened by gongyue666 9
  • Run other datasets

    Run other datasets

    hello!I saved a .ot file in dll/maps. And <arg name="map" default="myown.ot" /> But when I run the program , it shows "NULL otcomap". How come?Where else do I need to set the path?

    opened by MIke-1118 6
  • tested the given bag failed

    tested the given bag failed

    Hi, thanks for your great work! I have download the given bag for test the dll,but when i launched the launch file,it always shows the error,which is : " Octomap loaded Map size: x: 37.2 to 92.75 y: 41.95 to 95.65 z: -10.4 to 0.15 Res: 0.05 Error opening file /home/whx/study/dll_ws/src/dll/maps/airsim.grid for reading Computing 3D occupancy grid. This will take some time... [ INFO] [1640669470.668451692, 1614448809.604375476]: Progress: 0.000000 % [ INFO] [1640669471.163893210, 1614448810.107720910]: Progress: 0.021567 % [ INFO] [1640669471.668560708, 1614448810.612384198]: Progress: 0.039648 % [ INFO] [1640669472.172075265, 1614448811.115887848]: Progress: 0.053874 % [ INFO] [1640669472.680451449, 1614448811.624293216]: Progress: 0.065055 % [ INFO] [1640669473.184041975, 1614448812.127884273]: Progress: 0.073926 % ... ... [bag_player-2] process has finished cleanly log file: /home/whx/.ros/log/5879e12a-679f-11ec-9f57-c0e43482dfff/bag_player-2*.log " I have noticed there is a closed issue which talk about it,so i repeated the same test for many times.But it didn't work.

    I hope someone can help me solve the problem.

    Best wishes

    opened by numb0824 2
  • open map file failed

    open map file failed

    Thanks for your great works! I want to run your code just used roslaunch dll airsim1.launch and changed the true path about the .bag. But I meet the following error Screenshot from 2021-11-30 10-16-11 Could you help me how to solve the problem? Thanks.

    opened by huangsiyuan0717 2
  • Transform of input map

    Transform of input map

    Hello!

    I'd first like to thank you for this work, it's very interesting!

    I have a question regarding the internal representation of the map: when looking through the code I notice that you subtract the minimum values from each axis of the points. I suppose this is relevant for the method? I got some (obviously) poor results when I assumed the input map and internal representation were the same.

    I think it would be nice to make this clearer in the readme, or potentially add some transform between the original map and the internal representation such that the initial position set in the launch file could be relative the original map.

    opened by MartinEekGerhardsen 3
Releases(v1.1)
  • v1.1(Mar 22, 2022)

    Improved memory allocation and solver parameterization

    • Added use_yaw_increments parameter that uses yaw increments from IMU since last LIDAR update as initial guess for the optimizer. This is a good choice when robot performs very fast yaw rotations
    • Added grid trilinear interpolation computation online. This will reduce the DLL memory requirements by a factor of 7 approximatelly
    • Added parameters to set solver max iterations and max threads
    • Added comprehensive message when .grid files is no found
    Source code(tar.gz)
    Source code(zip)
  • v1.0(Mar 22, 2022)

    Initial Commit

    • This version contains the source code related wit the IROS paper detailed in the README
    • Some cleaning has been done to make it simpler to understand
    Source code(tar.gz)
    Source code(zip)
Owner
Service Robotics Lab
Service Robotics, Autonomous Robot Navigation, Machine Learning, Social Robotics
Service Robotics Lab
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022