DLL: Direct Lidar Localization

Related tags

Deep Learningdll
Overview

DLL: Direct Lidar Localization

Summary

This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aerial robots. DLL implements a point cloud to map registration based on non-linear optimization of the distance of the points and the map, thus not requiring features, neither point correspondences. Given an initial pose, the method is able to track the pose of the robot by refining the predicted pose from odometry. The method performs much better than Monte-Carlo localization methods and achieves comparable precision to other optimization-based approaches but running one order of magnitude faster. The method is also robust under odometric errors.

DLL is fully integarted in Robot Operating System (ROS). It follows the general localization apparoch of ROS, DLL makes use of sensor data to compute the transform that better fits the robot odometry TF into the map. Although an odometry system is recommended for fast and accurate localization, DLL also performs well without odometry information if the robot moves smoothly.

DLL experimental results in different setups

Software dependencies

There are not hard dependencies except for Google Ceres Solver and ROS:

Hardware requirements

DLL has been tested in a 10th generation Intel i7 processor, with 16GB of RAM. No graphics card is needed. The optimization is currently configured to be single threaded. You can easily reduce the processing time by a 33% just increasing the number of threads used by Ceres Solver.

Compilation

Download this source code into the src folder of your catkin worksapce:

$ cd catkin_ws/src
$ git clone https://github.com/robotics-upo/dll

Compile the project:

$ cd catkin_ws
$ source devel/setup.bash
$ catkin_make

How to use DLL

You can find several examples into the launch directory. The module needs the following input information:

  • A map of the environment. This map is provided as a .bt file
  • You need to provide an initial position of the robot into the map.
  • base_link to odom TF. If the sensor is not in base_link frame, the corresponding TF from sensor to base_link must be provided.
  • 3D point cloud from the sensor. This information can be provided by a 3D LIDAR or 3D camera.
  • IMU information is used to get roll and pitch angles. If you don't have IMU, DLL will take the roll and pitch estimations from odometry as the truth values.

Once launched, DLL will publish a TF between map and odom that alligns the sensor point cloud to the map.

When a new map is provided, DLL will compute the Distance Field grid. This file will be automatically generated on startup if it does not exist. Once generated, it is stored in the same path of the .bt map, so that it is not needed to be computed in future executions.

As example, you can download 5 datasets from the Service Robotics Laboratory repository (https://robotics.upo.es/datasets/dll/). The example launch files are prepared and configured to work with these bags. You can see the different parameters of the method. Notice that, except for mbzirc.bag, these bags do not include odometry estimation. For this reason, as an easy work around, the lauch files publish a fake odometry that is the identity matrix. DLL is faster and more accurate when a good odometry is available.

Cite

DLL has been accepted for publication in IROS 2021.

F. Caballero and L. Merino. "DLL: Direct LIDAR Localization. A map-based localization approach for aerial robots". Sumbitted to the International Conference on Intelligent Robots and Systems, IROS 2021.

You can download preliminar version of the the paper from arXiv

Comments
  • Using Livox mid 70 get bad result

    Using Livox mid 70 get bad result

    Hi, I use Livox mid 70 with wheel odometry and IMU, but the localization result is not good, the robot pose always "jump" when running. any idea to make a better result (stable, smooth, continues path)

    opened by gongyue666 9
  • Run other datasets

    Run other datasets

    hello!I saved a .ot file in dll/maps. And <arg name="map" default="myown.ot" /> But when I run the program , it shows "NULL otcomap". How come?Where else do I need to set the path?

    opened by MIke-1118 6
  • tested the given bag failed

    tested the given bag failed

    Hi, thanks for your great work! I have download the given bag for test the dll,but when i launched the launch file,it always shows the error,which is : " Octomap loaded Map size: x: 37.2 to 92.75 y: 41.95 to 95.65 z: -10.4 to 0.15 Res: 0.05 Error opening file /home/whx/study/dll_ws/src/dll/maps/airsim.grid for reading Computing 3D occupancy grid. This will take some time... [ INFO] [1640669470.668451692, 1614448809.604375476]: Progress: 0.000000 % [ INFO] [1640669471.163893210, 1614448810.107720910]: Progress: 0.021567 % [ INFO] [1640669471.668560708, 1614448810.612384198]: Progress: 0.039648 % [ INFO] [1640669472.172075265, 1614448811.115887848]: Progress: 0.053874 % [ INFO] [1640669472.680451449, 1614448811.624293216]: Progress: 0.065055 % [ INFO] [1640669473.184041975, 1614448812.127884273]: Progress: 0.073926 % ... ... [bag_player-2] process has finished cleanly log file: /home/whx/.ros/log/5879e12a-679f-11ec-9f57-c0e43482dfff/bag_player-2*.log " I have noticed there is a closed issue which talk about it,so i repeated the same test for many times.But it didn't work.

    I hope someone can help me solve the problem.

    Best wishes

    opened by numb0824 2
  • open map file failed

    open map file failed

    Thanks for your great works! I want to run your code just used roslaunch dll airsim1.launch and changed the true path about the .bag. But I meet the following error Screenshot from 2021-11-30 10-16-11 Could you help me how to solve the problem? Thanks.

    opened by huangsiyuan0717 2
  • Transform of input map

    Transform of input map

    Hello!

    I'd first like to thank you for this work, it's very interesting!

    I have a question regarding the internal representation of the map: when looking through the code I notice that you subtract the minimum values from each axis of the points. I suppose this is relevant for the method? I got some (obviously) poor results when I assumed the input map and internal representation were the same.

    I think it would be nice to make this clearer in the readme, or potentially add some transform between the original map and the internal representation such that the initial position set in the launch file could be relative the original map.

    opened by MartinEekGerhardsen 3
Releases(v1.1)
  • v1.1(Mar 22, 2022)

    Improved memory allocation and solver parameterization

    • Added use_yaw_increments parameter that uses yaw increments from IMU since last LIDAR update as initial guess for the optimizer. This is a good choice when robot performs very fast yaw rotations
    • Added grid trilinear interpolation computation online. This will reduce the DLL memory requirements by a factor of 7 approximatelly
    • Added parameters to set solver max iterations and max threads
    • Added comprehensive message when .grid files is no found
    Source code(tar.gz)
    Source code(zip)
  • v1.0(Mar 22, 2022)

    Initial Commit

    • This version contains the source code related wit the IROS paper detailed in the README
    • Some cleaning has been done to make it simpler to understand
    Source code(tar.gz)
    Source code(zip)
Owner
Service Robotics Lab
Service Robotics, Autonomous Robot Navigation, Machine Learning, Social Robotics
Service Robotics Lab
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022