Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Overview

Neural Scene Flow Prior

License: MIT

Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey

Will appear on Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS, 2021) as spotlight.

arXiv link: https://arxiv.org/pdf/2111.01253.pdf

  • Scene flow results on Argoverse

    Scene flow results on Argoverse

  • Point cloud integration (left: densified point cloud; right: sparse point cloud)

    Point cloud integration

Prerequisites

This code is based on PyTorch implementation, and tested on torch=1.6.0 with CUDA 10.1 OR torch=1.7.1 with CUDA 10.2.

For a detailed installation guide, please go to requirements.txt.

Dataset

We provide four datasets we used in our paper. You may download datasets used in the paper from these anonymous links:

After you download the dataset, you can create a symbolic link in the ./dataset folder as ./dataset/kitti, ./dataset/argoverse, ./dataset/nuscenes, and ./dataset/flyingthings.

Optimization

Since we use neural scene flow prior for runtime optimization, our method does not include any "training".

Just run following lines for a simple optimization on a small KITTI Scene Flow dataset (only 50 testing samples)

python optimization.py \
--dataset KITTISceneFlowDataset \
--dataset_path dataset/kitti \
--exp_name KITTI_2048_points \
--batch_size 1 \
--iters 5000 \
--compute_metrics \
--num_points 2048 \
--hidden_units 128 \
--lr 0.008 \
--backward_flow \
--early_patience 70 \
--visualize

You can then play with these configurations. We provide commands we used to generate results in the small point coud (2048 points) experiments and large point cloud (all points included) experiments.

1. small point cloud (2048 points)

KITTI Scene Flow

python optimization.py \
--dataset KITTISceneFlowDataset \
--dataset_path dataset/kitti \
--exp_name KITTI_2048_points \
--batch_size 1 \
--iters 5000 \
--compute_metrics \
--num_points 2048 \
--hidden_units 128 \
--lr 0.008 \
--backward_flow \
--early_patience 70 \
--visualize

Argoverse Scene Flow

python optimization.py \
--dataset ArgoverseSceneFlowDataset \
--dataset_path dataset/argoverse \
--exp_name Argoverse_2048_points \
--batch_size 1 \
--iters 5000 \
--compute_metrics \
--num_points 2048 \
--hidden_units 128 \
--lr 0.008 \
--backward_flow \
--early_patience 30 \
--visualize

nuScenes Scene Flow

python optimization.py \
--dataset NuScenesSceneFlowDataset \
--dataset_path dataset/nuscenes \
--exp_name Argoverse_2048_points \
--batch_size 1 \
--iters 5000 \
--compute_metrics \
--num_points 2048 \
--hidden_units 128 \
--lr 0.008 \
--backward_flow \
--early_patience 30 \
--visualize

FlyingThings3D

python optimization.py \
--dataset FlyingThings3D \
--dataset_path dataset/flyingthings \
--exp_name FlyingThings_2048_points \
--batch_size 1 \
--iters 5000 \
--compute_metrics \
--num_points 2048 \
--hidden_units 128 \
--lr 0.008 \
--backward_flow \
--early_patience 30 \
--visualize

2. dense point cloud (all points included)

KITTI Scene Flow

python optimization.py \
--dataset KITTISceneFlowDataset \
--dataset_path dataset/kitti \
--exp_name KITTI_2048_points \
--batch_size 1 \
--iters 5000 \
--compute_metrics \
--use_all_points \
--hidden_units 128 \
--lr 0.001 \
--early_patience 100 \
--visualize

Argoverse Scene Flow

python optimization.py \
--dataset ArgoverseSceneFlowDataset \
--dataset_path dataset/argoverse \
--exp_name Argoverse_2048_points \
--batch_size 1 \
--iters 5000 \
--compute_metrics \
--use_all_points \
--hidden_units 128 \
--lr 0.003 \
--backward_flow \
--early_patience 100 \
--visualize

Contributing

If you find the project useful for your research, you may cite,

@article{li2021neural,
  title={Neural scene flow prior},
  author={Li, Xueqian and Pontes, Jhony Kaesemodel and Lucey, Simon},
  journal={arXiv preprint arXiv:2111.01253},
  year={2021}
}
Owner
Lilac Lee
Lilac Lee
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022